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The electron wave: a wave of probability

de Broglie found that the electron is a wave!

Planck-Einstein E =hv = Aw, wW=2mrv. fi=h /(27[),
h
de Broglie P = Z = 7k, k=2x/A.

Electron gun Interference fringe

Schematic picture of

an electron (emitte \aﬁ 00%:
o) > 8 8 8 8 IU% I ﬂ »
0000 ® -

[> Wavefunction Electron bi-prism
w(x,t) = expli(kx —wt)) = exp(i( px - Et)/ 7)

Let’s find an equation for the wave function. Later interpretation will come.
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Designing the wave equation

Wave packet: ¥(X,t)= foo f(p)exp(i(px—E(p)-t)/7)dp,

; 1
ihay/(x,t): LO Ef (p)exp(i(px—E(p)-t)/ 7 )dp,

. the time derivative gives the energy.

2y x=[ 0 (plexpli(pr- E(pR) 1k,

. the position derivative gives the momentum.
2

Thus, if E(p)—p— =0 s satisfied, then,
2m

2 2
(m 0 _—t 52jw(x,t):o.

ot 2m 0OX

The Schrodinger equation for a free particle.



The Schrodinger equation for a particle

Thus, an electron acting as a classical particle in some condition is a wave
which follows the next equation of motion.

(az 0> 0 ]W(r,t).

+——+
ox> oy’ oz’

2
in 2y (rt)=—"

ot 2m
pz
Here, we assume a dispersion relation, E( p) =——.
2m
2
L o (n)= P
If an external potential exists and the energy is given as, E(p)= 2— +V(r),
m

we should utilize

2
mgw(m): —f—mAw(r,t)+v(r)w(r,t).



Electron-electron interaction & electron spin

eZ

V(ri,rj)

: The Coulomb interaction
(repulsion)

b

Spin 1s a small magnetic
moment on electron.
But, possible states are
only two states specified
by the spin variable ;.
(Note that electron is

a point particle.)

(I)( 1L, Oy )



The Schrodinger equation for an electron system

Finally, we have the next differential equation:

The Schrodinger equation for N electrons is given as follows.

HO =>H(r;)®+ > V(r;,r;)® = ED,
i i<

h2
7‘[(1‘) — —%A - U(I‘) 5
2

€

V(I‘i, rj) —

v — 1y

The wave function ®(ry, 01,19, 09, -+, 7, o) is determined in
a phase space of coordinates r; and spin variables o;.

Each electron has a spin S = —¢ and a magnetic moment y =

—gupS with a g-factor g = 2.0023 in vaccume.



Concept of the variational principle

= The energy expectation value of any state 1s larger
or equals to the ground-state energy.

The ground state An excited state Another excited state
Eo ETI ET2

This concept holds for any system described by the quantum mechanics (QM).
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Another variational principle

When we can divide a set of wave functions into
subsets by
0 Symmetry

2 An order parameter

we can have another variational principle.

Ex. Spatial Symmetry The single particle density n(r) as
an order parameter of an electron system

The lowest state  The lowest state
n p,-waves ind,,, ,-wave




Levy’s energy density functional

F[n]= min<\P T +\7ee

Y —-n

)

e This functional has a minimum.
* [t represents that the phase space of many-body wave
function 1s classified by the single-particle density.

e

Minimization search is done both in n explicitly and .

U U V| Asubset of w.f.
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A variational principle on n(r)
E, :min{F[n]+_[n )-v,. (r )dr}
= mnm {\}Ln j ext } mnin E, [n]

Y Y V| A subset of w.f.

e

g

n(r)  m()  ny(r)

The lowest solution 1s given by n,(r) for the potential v (),
but n,(r) for v, ().
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The Kohn-Sham theory

= By the density-functional theory, we can utilize the

single-particle density n(r) instead of ®(X,,X,,X3, -

= Once n(r) 1s made as a major variable, we can construct a

theory to connect
0 The original many-body problem

o An effective single-particle problem

4-}

Kohn-Sham
theory

¢ ()
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The Kohn-Sham Minimization process

Ey

(Vs T + Vee| Tas) +/7’ZGS ) Vet (r)d’r

mgn {lpmm) \IJ|T—0—Vee|\I! / I)Vert(T }
m%n{\y;nirg)( '\T|®"Y + F[n] — Frln +/ T)Vert (T }

n W/ —n(r)

+ /n@;(r)vemt(r)dg?"}}

. a n
o VW) 5 [P

min{ min {(xp’|:f*|\1/’) + Flng] — Fring]

2

—Z R (r)ne (x )d?”f'dg " — Frlny] +/ (T)Veat (T )dST}

2 r — 1’|

\l;f

+/n‘1,f r fuemt(r)d?’r}

. n
mln{ |T| 2/ w( r’] d3 d°r' + By [ng]

The GS energy is given by minimization of the wavefunction functional.

I%i,n Gr[P']. (3)
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The local density approximation I.

We need to evaluate E,. and v,. by approximate methods. The simplest
method is to use the local-density approximation (LDA).

In LDA, E,. is constructed from the exchange-correlation energy per electron
at a point r in an inhomogeneous electron gas, £,.(p(r)), which is given by that
of the homogeneous electron gas with the density p.

Eqclp(r)] = [ dreg(p(r))p(r) -

The functional derivative of F,. in LDA is obtained via the next calculation.

B OE,[p(r)]
5EJ;(;[P(I')} o -[dr 5P(r)

Oec(p)p
= [d
/dr 9o

op(r)

Thus v, 1s given by,
_ Oezc(p)p
dp

Vye(T)

p=p(r) ’s



‘ Correlation energy density for LDA

0 1 ]

Vosko, Wilk & Nusair (1980) |

0.02F . \‘ ----------"::'::::::::_.—-—-—-—-—:
S ™ Hedin & Lundqvist (1971)
~0.04 L Perdew & Zunger (1981) -
-0.06 | I
-0.08 |
-0.1

_0.12 1 1 1 1
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Exchange-Correlation hole for atoms

The exchange-correlation energy functional may be

written as,
E.[n]= —jdrn jdr‘r r\ r,r')

n(r,r)= j[g (r,r',2)-o(r - r)]d/l

:L[\Pﬁ A(r)—n(r)XA(r) —n(r)] ¥, )/ n(r) - &(r =" fda.

Fluctuation!

In LDA, we approximate nxc by that of the
homogeneous electron gas as,

n.(r,r)= th"m rr,A) l]d/l

with
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Sum rule on the LDA exchange-correlation

ooy @A) =noXar)=n() - s(e-r) W) s(r—r
ol )- n(r)n(r’) n(r)  n(rn(r) ()

AR sy (AERERT s
A ) T ey o)

Let V be the volume of the system. Then, we have,

jdr'nXLCDA(r,r'): _[dr'n(r)jol g™ (r,r, 4)-1)d4
= dr'n(r)f{m(r)ﬁ(r'»:om —5(r_r')—1}d/1= [ (e ard(e), ~1=n(r\ |d2

0 n(r)’ n(r) n(r)
] ﬁ{nw i _1_n<ﬂdz .

r)

Thus, LDA satisfies the sum rule.



Exchange-correlation hole in H

Gunnarsson, Jonson & Lundqvist, PRB 20 (1979) 3136.
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FIG. 6. Spherical average of the hydrogen XC hole
[Eq. (16)] times 7’’ for »=1 and 2 a.u. as a function of

¥’’. The full curves give the exact results and the

r'lag dashed curves are calculated in the: LD approximation.
FIG. 4. Exchange-correlation hole ny¢ (r, 1) ‘ .
(Eq. 15) for a hydrogen atom. The full curve shows If one looks at spherical average of
the exact hole, while the dashed curves depict the hole the XC hole the LDA I'CSlllt iS CIOSC
in the LD approximation [Eq. (16)] for various positions 2
of the electron (0,1, and 2 a.u., from the proton), using to the exact one.
the dielectric function of Singwi et al (Ref. 37). The
- aig o i £ h . . . .
*-axis gives the distance from the nucleus E..[n] is proportional to an integral of the XC
r hole. Thus the total energy and its parameter

derivatives, 1.e. atomic forces, internal stress.

Atomic center
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Exchange hole for a neon atom
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FIG. 7. Spherical average of the neon exclange
FIG. 5. Exchange hole n,(T,T’) for a neon atom. The hole [Eg. (17)] times " for (a) »=10.09 a. u. and (b)
full curves show exact results and the dashed curves r=0.4 a.u. The full curves give the exact results and
show the results in the LD approximation. The curves the dashed curves are obtained in the LD approxima-
in (a) and (b) are for two different values of r. tion,

Gunnarsson, Jonson & Lundqvist, PRB 20 (1979) 3136.
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Determination equation at the stationary point

By making a derivative of Gp[¥] — E({¥|¥) — 1) with respect to (¥|, and
by equating it to be zero, we have a secular equation,

[T + Ueg(r)ﬂ(r)d?’?"] ) = BT (4)

Here the effective single particle potential veg(r) is given by,

O Eyc[n]

) + Vet (T) (5)

n(r)
’Ueﬁ‘(r) = /Wd 71, +
The charge density n(r) is given by

n(r) =D (UL ()Y, (r)| D). (6)

a
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‘ The Kohn-Sham equation

We solve the one-body problem given by v.g as,

{;’% e >}¢z<r>:a¢z<r>, 1)

If we construct a set of creation and annihilation operators dz o+ 1.5 aSSO-
ciated with ¢;(r), the effective problem is found to be given by,

Zeld 1. |V) = E|V), (8)
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Why the density functional theory 1s so promising?

The basic assumption:

0 Speed of particles 1n steady states in your hands:
nuclei1 < electrons < photons

o Electrons 1n a classical electro-magnetic (EM) field 1s
quantum mechanical.

Separation of degrees of freedom in the many-body system is introduced!

Density of electrons as the order parameter
& the source of the EM field. (static screening)

Self-consistent determination of the electron density

IS essential to distinguish the electron system in
various conditions.

22



‘ Band structure of cubic diamond

o / c* bands
25 | ' i ' 1 (anti-bonding
20 L Z ' \ bands)

EF‘I5., ........................................................................................................... ]

10 | i |
5| <7 Ey c bands

——| (bonding bands)

I X K I L KW X

An energy gap appears and the system 1s a wide-gap
semiconductor. LDA by PWO1.

Plane-wave expansion with ultra-soft PP.
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‘ Bonding charge 1in hex-diamond

= In a covalent crystal,
we can see charge
density of electrons at

= Yellow object
represents charge
density and white
spheres are carbons.

24



'Band structure of graphite

NN

0l /TN

K I M KH A L

The m-band is half-filled and there are small
Fermi pockets both for electrons and holes. (Semimetal)

G* bands
(anti-bonding
bands)

n* bands
(anti-bonding)

7 bands
(bonding bands)

G bands
(bonding bands)
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‘ Bonding charge 1n graphite

= Bonding charge
comes from o-
electrons.

u This system 1s a
semimetal where
the Fermi surface 1s
made of m-bands.
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The spin-density functional theory

To introduce spin density as a basic variable in DFT,
we have to modify the theory.

Current-DFT formulation DFT with arbitral basic
o Extension of Levy’s variables
functional to relativistic o Extension of Levy’s
version (Rajagopal- constrained search
Callaway, and other works) (Higuchi-Higuchi)

a,b)

a,b> F[n,m]: min <a,b"|c +\7ee

¥—(n,m)

jH (r)dr

F[n,jl= min (a,b

la,b)—>(n.j)

E..[n,m] is obtained by e.g. fitting the numerical data of QMC for
a spin polarized electron gas. — LSDA, spin-GGA
Solvers for DFT are immediately applied for the spin-DFT calculations.
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GEA, GGA and meta-GGA

Gradient expansion approximation : GEA
V?’ZU Vngf

2/3  ~ 9/3 °
no/ TLU{

ES 4y, n] = EX2P 40y, n)) + ) / d’rCy o (ny,n))

Generalized gradient approximation : GGA
ES%4n,n)] = /d?’frf(m,m,Vm,Vm).

Meta Generalized gradient approximation : meta-GGA

28



‘ GEA exchange hole

g P (r,r +u) = —n(r)g(r, u)/2,
g(r,u) = J(2) +4L(2)0a-s/3 — 16M(2)(1-s)*/27 — 16N (z)s*/3,
s(r) = Vn(r)/(2kp(r)n(r)),
ke(r) = (37°n(r)) ",
z(r,u) = 2kp(r)u,
u=u/u.

Here n¢F# means an expression in which an expression proportional to [Vn|?

and another to V*n are integrated by parts to reduce the order of derivatives.
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Difficulty 1n the gradient expansion approximation

Cf. K. Burke, J.P. Perdew and Y. Wang
In electronic Density Functional Theory edt. Dobson et al. (1998).

The gradient expansion approximation (GEA) fails due to

o Impossibe to full fill next equality and an inequality.

ng(r,r+u) <0, : negativity of exchange hole
/ dsunm(r, r+u)=—1, :sumrule for exchange hole
/ d*un.(r,r +u) =0.  :sum rule for correlation hole

Here, n,(r,r +u) and n.(r,r +u) are the exchange hole and the correlation
hole, which follows n,.(r,r +u) = n,(r,r +u) + n.(r,r + u) and,
Coupling constant is proportional to A

1 .
Nge(r,r+1u) = / dAnge\(r,r +u)  keeping p(r). \
0

fa [(\If,\l(ﬁ(r) - n(r))(ﬁg( - W —n(r W) ol
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GGA given by cutoff procedure to GEA

In GGA, starting from GEA, cuttoff procedure 1s
introduced to keep

negativity of exchange hole
sum rule for exchange hole
sum rule for correlation hole

For the case of exchange hole,

AZOA = ()i, WO (., )6 (x) — )

where f(x) is the step function.

For the case of correlation hole, similar expressions with a cutoff in a
reduced separation on the Thomas-Fermi length scale, when it is integrated.
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Transition metal elements

Characteristics of 3d transition metals

0 Spins in an atom or 1n an ion align by Hund’s coupling

The Hund rule tells that if there is degeneracy w.r.t. L & S,
0 The maximum S appears.
0 The maximum allowed L for given S appears.

o d-orbitals have characters below.
They are rather localized around the nucleus.
They form narrow bands.

To explain ferromagnetism in 3d transition metals, we have to
consider at least by an itinerant electron picture, since

Element T./K M/pg Configuration
Fe 1043 2.219 3d°
Co 1404 1.715 3d’
Ni 630 0.604 3d8

32



‘DFT-GGA calculation of Fe
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FIG. 1. Total energy E,, and magnetic moment u of Fe as a
function of the Wigner-Seitz radius Rys, calculated by the
LDA of Ceperley and Alder. The solid curve corresponds to
the bcc, the dotted to the fce, and the dashed to the hep. The
circles indicate NM, the triangles FM, and the squares AF, and
the filled (open) symbols are for the high-spin (low-spin) state
solutions of the corresponding magnetic phase.

s (ug)

-2528.30

NM BCC —
AFBCC—2

_—

AF HCP—E
NM FCC~Y =

NM HCP/

FM BCC — ] |,

2.5 2.6 2.7 2.8
Rws (a.u.)

V

FIG. 2. Total energy E,, and magnetic moment u of Fe as a
function of the Wigner-Seitz radius Rys, calculated by the
GGA of Perdew and Wang, and Perdew. The solid curve corre-
sponds to the bec, the dotted to the fcc, and the dashed to the
hep. The circles indicate NM, the triangles FM, and the
squares AF, and the filled (open) symbols are for the high-spin
(low-spin) state solutions of the corresponding magnetic phase.

T. Asada & K. Terakura, PRB 46 (1992) 13599.
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‘ GGA calculations of tetragonal manganites

1.10 ;

1.05
(=)
K=}
£ 1.00
3
FM (F)
0.95
—o
%2 04 06 08 10 0‘{;:2' 4
. ‘ Do i-n X . . ?E;n éveg-)
ping ergy (eV/Eu, '*

FIG. 1. (a) The phase diagram of La;_,Sr,MnO; in the plane .
of ¢/a and doping x obtained from total energy calculations as C-AF (CI) C-AF (C2)
demonstrated in (b). The solid lines give the phase boundaries
obtained from calculations with experimental volumes, while the
dashed lines correspond to the case with experimental volumes

G-AF (G)

FIG. 3 (color). The calculated charge density distribution for
the energy window of 0.6 eV width just below the Fermi level
for the different magnetic structures corresponding to all the

e{(panded by about 9%. (b) The calculatcd total energies fgr marks (X) in the phase diagram of Fig. 1. The different spin
dlﬂ‘erent phase_s of La;—.Sr, MnQ_; s a fung:tmn of the ¢/a rqtlo components (up and down) are drawn a:s. ciifferent colors. The
with fixed doping x = 0.5. ¢/a is varied with the corresponding Mn atom site at the corners of the cubes, while O atom (green
experimental volume fixed. spheres) site at the edge centers.

Fang, Solovyev & Terakura, PRL 84 (2000) 3169.

>  GGA may reproduce the orbital ordered (OO) magnetic phases.

Metal-insulator transition with OO may also be found. N



‘ Catalytic reaction on Pd surface

» Three way catalyst Pd catalyst supported on Alumina
a NO, reduction Pd oxide film  py
— —

o CO oxidation
CO+1/20,—CO,

a CH, oxidation Pd oxide film
CH_+(14+x/2)0,—CO,+x/2H,0 Ny

Pd nano-particle

N

La(Fe, Pd,)O;

Segregation of Pd nano-particles

and solid-solution of Pd in the perovskite

Oxidation and reduction processes on Pd oxide film is a key to understand
the phenomenon.
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Bridge site structure

Total energy : -968.8677(Ry)
Total force :6.1%x10°>(Ry/a.u.)

Bridge site




Reaction of NO, & CO
X (PdO),/Pd+NO,—N,+ x (PdO),0O/Pd

A= 2X Epgot 2 Exox— 2X Epgoro— En,

(PdO),0/Pd+CO—CO,+ (PdO),/Pd

A=Epjo+01 Eco~ EPdO'EC02

PdO : (PdO),/Pd

Oxygen |NO, NO reduction |N,O CO oxydation

sites reduction energy(Ry) reduction energy(Ry)
energy(Ry) energy(Ry)

bridge |0.2888 0.2086 0.096 0.204

hollow |0.2872 0.2078 0.092 0.208
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A first-principles simulation of NT-FET

Using the ESM Method

o We can obtain electronic structure of nanotube modeling the channel of FET

permittivity permittivity
£2=0 g,=w
(vacuum) (metal gate)

_/¢ Potential
J—

Static potential difference

Obtain the
electronic state by
the first principles
calculation only in
the central tube.

| CNT

Gate 1

I a

1) Otani,Sugino. Phys. Rev. B 73, 115407

(2006)
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Charge distribution of doped carrier 1n
double layer of tubes

econd layer

of (8,0) tube

} - 0.002

B 0.0015
| | | | | | | o oels
0
<P 0.0005
10 A | | | | | | | 0001
0.0015

0002

Top layer of
(9,0) tube Electric field is almost screened by the first layer.

Simulation by Yoshihisa Minamigawa, et al.
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Summary on the field effect doping

Case Induced electrons / Carbon = V

Exp. (nanotube film) 7.28 X104

Calc. (7,0) tubes with 10 A spacing | 1.2 X 1073

Calc. (7,0) tubes with 5.3 A spacing | 8.2 X 10

Calc. a tube film (double layer) 3.6 X107

Calc. a tube film (double layer) 6.7 X104

This result shows that feasibility of the simulation.
The electric field is screened almost completely by a single layer of tubes.
The field effect doping is done in the top layer of the tube film.

But, since the LDA error is not improved in the present approach, the given
Kohn-Sham state is not accurate enough to reproduce the chemical potential
shift across the band gap, E(N+1)-E(N), for infinitely long CNT, which has to be
accurately evaluated by DFT.
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Difficulty in GGA

Impossible to reproduce cohesion of layered materials,
graphite, hex-BN and CF.

o Due to two dimensionality.

0 Due to Van-der Waals nature (even worse for one-dimensional
materials including metallic nanotubes)

Impossible to reproduce magnetism of weak ferromagnets
including ZrZn,, meta-magnetic paramagnets including
Y Co, 1n the Laves phase.

o Due to strong tendency to stabilize ferromagnetism.

Interestingly, L(S)DA reproduces qualitative features of
these problematic materials.

Much accurate calculations (DMC for 2DEG, DMC with
backflow effects etc for EG) are required as references.
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Various methods to overcome difficulty of
DFT-LDA, DFT-GGA

Excitation spectrum 1s not properly described by DFT-
LDA, DFT-GGA.

o This is partly because DFT 1s only for the ground state. However,
sometimes, DFT-LDA & DFT-GGA incorrectly conclude a
metal rather than gapped excitations (Mott’s insulator).

For excitations: GW, GW+T, EXX+RPA (perturbative
methods.)

For Mott’s insulator: LDA+U, LDA++ (a model
description introduced in DFT.)
|i> Approach to

A new theory on the model space. the exact soluti0|412 !



