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The electron wave: a wave of probabilityp y
de Broglie found that the electron is a wave!
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S h i i f Electron gun Interference fringe
Schematic picture of
an electron

Electron gun
(emitter)

W f ti Electron bi-prism
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Let’s find an equation for the wave function. Later interpretation will come.



Designing the wave equationg g q
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The Schrödinger equation for a free particle.



The Schrödinger equation for a particle

Thus, an electron acting as a classical particle in some condition is a wave
which follows the next equation of motion.
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Electron-electron interaction & electron spin

rj

Spin is a small magnetic

ri

moment on electron.
But, possible states are
only two states specified
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by the spin variable σi.
（Note that electron is( ) .,
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（Note that electron is
a point particle.）

( ).,,, ⋅⋅⋅⋅⋅⋅Φ ii σr: The Coulomb interaction 
(repulsion)

6



The Schrödinger equation for an electron system
Finally, we have the next differential equation:
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Concept of the variational principlep p p

The energy expectation value of any state is larger gy p y g
or equals to the ground-state energy.

The ground state An excited state Another excited state

E0 ET1≦ ET2
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This concept holds for any system described by the quantum mechanics (QM).



Another variational principlep p

When we can divide a set of wave functions into 
subsets by

SymmetrySymmetry
An order parameter

h th i ti l i i lwe can have another variational principle.
Ex. Spatial Symmetry The single particle density n(r) as

an order parameter of an electron system

The lowest state
in p -waves

The lowest state
in d3 2 2-wave
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in px waves in d3z2-r2-wave



Levy’s energy density functionaly gy y
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→Ψ een
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• This functional has a minimum.
• It represents that the phase space of many-body wave
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It represents that the phase space of  many body wave 
function is classified by the single-particle density.
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Minimization search is done both in n explicitly and ψ.



A variational principle on n(r)p p ( )
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g y 2( ) p ext1( ),
but n1(r) for vext2(r).



The Kohn-Sham theoryy

B h d i f i l h ili hBy the density-functional theory, we can utilize the 
single-particle density n(r) instead of Φ(x1,x2,x3,‥).

( ) i d j i blOnce n(r) is made as a major variable, we can construct a 
theory to connect 

Th i i l b d blThe original many-body problem
An effective single-particle problem

Φ( ) ( ) φ ( )

Kohn-Sham
theory

DFT

Φ(x1,x2,x3,‥) n(r) φ (r)
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The Kohn-Sham Minimization process

13The GS energy is given by minimization of the wavefunction functional.



The local density approximation I.y pp
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Correlation energy density for LDAgy y

Vosko Wilk & Nusair (1980)

Hedin & Lundqvist (1971)

Vosko, Wilk & Nusair (1980)

Hedin & Lundqvist (1971)
Perdew & Zunger (1981)

Wigner (1934)

Nozières & Pines (1958)

g ( )
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Exchange-Correlation hole for atomsg

The exchange-correlation energy functional may be 
written as,
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In LDA, we approximate nxc by that of the 
homogeneous electron gas as

Fluctuation!

homogeneous electron gas as,
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Sum rule on the LDA exchange-correlationg
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Let V be the volume of the system Then we have
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Exchange-correlation hole in Hg
Gunnarsson, Jonson & Lundqvist, PRB 20 (1979) 3136.

If one looks at spherical average of 
the XC hole, the LDA result is close 
to the exact oneto the exact one.

Exc[n] is proportional to an integral of the XC 
hole. Thus the total energy and its parameter 
d i ti i t i f i t l t

r r’
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derivatives, i.e. atomic forces, internal stress. 
Atomic center



Exchange hole for a neon atomg
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Gunnarsson, Jonson & Lundqvist, PRB 20 (1979) 3136.



Determination equation at the stationary point
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The Kohn-Sham equationq
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Why the density functional theory is so promising?

The basic assumption:p
Speed of particles in steady states in your hands: 
nuclei < electrons < photonsnuclei < electrons < photons
Electrons in a classical electro-magnetic (EM) field is 
quantum mechanicalquantum mechanical.

D it f l t th d t
Separation of degrees of freedom in the many-body system is introduced!

Density of electrons as the order parameter         
& the source of the EM field. (static screening)

Self-consistent determination of the electron density 
is essential to distinguish the electron system in 

22

g y
various conditions.



Band structure of cubic diamond
σ∗ bands
(anti-bonding
bands)

σ bands
(bonding bands)

Γ Γ

An energy gap appears and the system is a wide-gap
semiconductor

Γ Γ

23

semiconductor. LDA by PW91.
Plane-wave expansion with ultra-soft PP.



Bonding charge in hex-diamondg g
In a covalent crystal, y ,
we can see charge 
density of electrons atdensity of electrons at 
each bond connection.
Yello objectYellow object 
represents charge 
d i d hidensity and white 
spheres are carbons.
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Band structure of graphiteg p
σ∗ bands
(anti-bonding(anti bonding
bands)
π∗ bands

π bands

(anti-bonding)

σ bands

π bands
(bonding bands)
σ bands
(bonding bands)

Γ

The π-band is half-filled and there are small

Γ
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Fermi pockets both for electrons and holes. (Semimetal)



Bonding charge in graphiteg g g p
Bonding charge g g
comes from σ-
electrons.
This system is a 
semimetal wheresemimetal where 
the Fermi surface is 
made of π-bands.
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The spin-density functional theoryp y y
To introduce spin density as a basic variable in DFT, 
we have to modify the theory.

Current-DFT formulation
Extension of Levy’s 

DFT with arbitral basic 
variableste s o o evy s

functional to relativistic 
version             (Rajagopal-
C ll d th k )

Extension of Levy’s 
constrained search 

Callaway, and other works) (Higuchi-Higuchi)
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Exc[n,m] is obtained by e.g. fitting the numerical data of QMC for
a spin polarized electron gas. → LSDA, spin-GGA
S l f DFT i di t l li d f th i DFT l l ti
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Solvers for DFT are immediately applied for the spin-DFT calculations. 



GEA, GGA and meta-GGA,

Gradient expansion approximation : GEAGradient expansion approximation : GEA

Generalized gradient approximation : GGA

Meta Generalized gradient approximation : meta-GGA
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GEA exchange holeg
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Difficulty in the gradient expansion approximation
Cf. K. Burke, J.P. Perdew and Y. Wang
In electronic Density Functional Theory edt. Dobson et al. (1998).

The gradient expansion approximation (GEA) fails due to
Impossibe to full fill next equality and an inequality.Impossibe to full fill next equality and an inequality.

: negativity of exchange hole

l f h h l: sum rule for exchange hole

: sum rule for correlation hole

li i i l λCoupling constant is proportional to λ
keeping ρ(r).
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GGA given by cutoff procedure to GEA

In GGA, starting from GEA, cuttoff procedure is 
i t d d t kintroduced to keep 

negativity of exchange hole
sum rule for exchange hole
sum rule for correlation hole

For the case of exchange hole,

For the case of correlation hole, similar expressions with a cutoff in a 
reduced separation on the Thomas-Fermi length scale when it is integrated

31

reduced separation on the Thomas-Fermi length scale, when it is integrated.



Transition metal elements
Characteristics of 3d transition metals

Spins in an atom or in an ion align by Hund’s coupling
h d l ll h if h i d & SThe Hund rule tells that if there is degeneracy w.r.t. L & S,

The maximum S appears.
The maximum allowed L for given S appears.

d-orbitals have characters below.
They are rather localized around the nucleus.
They form narrow bandsThey form narrow bands.

To explain ferromagnetism in 3d transition metals, we have to 
consider at least by an itinerant electron picture, since

Element Tc/K M/μB Configuration
F 1043 2 219 3d6Fe 1043 2.219 3d6

Co 1404 1.715 3d7

32

Ni 630 0.604 3d8



DFT-GGA calculation of Fe

NM BCC

AF BCC

AF HCP

NM BCC

AF HCP

NM HCP

NM FCC

FM BCC

NM HCP

33T. Asada & K. Terakura, PRB 46 (1992) 13599.



GGA calculations of tetragonal manganites

Fang, Solovyev & Terakura, PRL 84 (2000) 3169.
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GGA may reproduce the orbital ordered (OO) magnetic phases.
Metal-insulator transition with OO may also be found.



Catalytic reaction on Pd surfacey

Th t l tThree way catalyst
NOx reduction

Pd catalyst supported on Alumina

PdPd oxide film

NOx→1/2N2+x/2O2

CO oxidation
Al2O3

CO+1/2O2→CO2

CHx oxidation Pd nano-particlePd oxide film

Self-regenerative Pd nano-particle

CHx+(1+x/2)O2→CO2+x/2H2O
La(Fe1-xPdx)O3

Segregation of Pd nano-particles
and solid-solution of Pd in the perovskite

35

Oxidation and reduction processes on Pd oxide film is a key to understand 
the phenomenon.



Bridge site structureg
Total energy : -968.8677(Ry)
Total force    : 6.1×10-5(Ry/a.u.)( y )

Bridge site

3644



Reaction of NOx & COx
x (PdO)4/Pd+NOx→N2+ x (PdO)4O/Pd

Δ= 2x EPdO+ 2 ENOx– 2x EPdO+O– EN2

(PdO)4O/Pd+CO→CO2+ (PdO)4/Pd

Δ=E + E – E -E
PdO : (PdO)4/Pd

O NO NO d ti N O CO d ti

Δ EPdO+O+ ECO– EPdO-ECO2

Oxygen 
sites

NO2
reduction
energy(Ry)

NO  reduction
energy(Ry)

N2O 
reduction
energy(Ry)

CO oxydation
energy(Ry)

energy(Ry) energy(Ry)
bridge 0.2888 0.2086 0.096 0.204
hollow 0 2872 0 2078 0 092 0 208
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hollow 0.2872 0.2078 0.092 0.208



A first-principles simulation of NT-FETp p
Using the ESM Method

We can obtain electronic structure of nanotube modeling the channel of FETWe can obtain electronic structure of nanotube modeling the channel of FET

permittivitypermittivity
Obtain the 
electronic state bypermittivity

ε1＝∞
（metal gate）

permittivity
ε2＝0

(vacuum)

electronic state by 
the first principles 
calculation only in 
the central tube.

St ti t ti l
Potential 
differenceStatic potential difference

CNT

Gate
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1) Otani,Sugino. Phys. Rev. B 73, 115407 
(2006)



Charge distribution of doped carrier in g p
double layer of tubes

Second layer 
of (8 0) tubeof  (8,0) tube

10Å

Electric field is almost screened by the first layer.
Top layer of  
(9,0) tube

Si l ti b Y hihi Mi i t l
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Simulation by Yoshihisa Minamigawa, et al.



Summary on the field effect dopingy p g
Case Induced electrons / Carbon ・ V

Exp (nanotube film) 7 28×10-4Exp. (nanotube film) 7.28×10 4

Calc. (7,0) tubes with 10Å spacing 1.2×10-3

C l (7 0) t b ith 5 3Å i 8 2×10 4Calc. (7,0) tubes with 5.3Å spacing 8.2×10-4

Calc. a tube film (double layer) 3.6×10-5

C l t b fil (d bl l ) 6 7×10 4Calc. a tube film (double layer) 6.7×10-4

This result shows that feasibility of the simulation.
The electric field is screened almost completely by a single layer of tubes.
The field effect doping is done in the top layer of the tube film.
But since the LDA error is not improved in the present approach the givenBut, since the LDA error is not improved in the present approach, the given 
Kohn-Sham state is not accurate enough to reproduce the chemical potential 
shift across the band gap, E(N+1)-E(N), for infinitely long CNT, which has to be 
accurately evaluated by DFT

40

accurately evaluated by DFT.



Difficulty in GGAy
Impossible to reproduce cohesion of layered materials, 
graphite hex BN and CFgraphite, hex-BN and CF.

Due to two dimensionality.
Due to Van-der Waals nature (even worse for one-dimensional (
materials including metallic nanotubes)

Impossible to reproduce magnetism of weak ferromagnets 
i l di Z Z i i l diincluding ZrZn2, meta-magnetic paramagnets including 
YCo2 in the Laves phase.

Due to strong tendency to stabilize ferromagnetismDue to strong tendency to stabilize ferromagnetism.
Interestingly, L(S)DA reproduces qualitative features of 

these problematic materials.these problematic materials.
Much accurate calculations (DMC for 2DEG, DMC with 

backflow effects etc for EG) are required as references.
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Various methods to overcome difficulty of y
DFT-LDA, DFT-GGA

Excitation spectrum is not properly described by DFTExcitation spectrum is not properly described by DFT-
LDA, DFT-GGA.

This is partly because DFT is only for the ground state HoweverThis is partly because DFT is only for the ground state. However, 
sometimes, DFT-LDA & DFT-GGA incorrectly conclude a  
metal rather than gapped excitations (Mott’s insulator).

For excitations:  GW, GW+T, EXX+RPA (perturbative 
methods.)
For Mott’s insulator: LDA+U, LDA++ (a model 
description introduced in DFT.)

Approach to
42

A new theory on the model space. 
Approach to 
the exact solution !


