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Introduction

A package ”Osaka2002 nano” (or shortly ”Osaka2002” or Osaka2k) is a set
of program codes which calculate electronic structures of materials by first-
principles pseudopotential method. It covers a wide range of calculations
from optimization of crystal structure to molecular dynamic simulations,
in addition to standard self-consistent calculation and band calculations.
Every components are the art-of-state calculations.

What we call nowadays first-principles calculations are also called in
many ways, e.g., ab-initio calculation, parameterless calculation, etc. The
naming is cynical. 1 Which principle is the first one? The approach is not a

posteriori (empirical?), but really heavy experiences are needed to acquaint
the skill of calculations. Parameterless is by no means no parameters in
calculations. Although no parameter fitted to experiment is assumed, there
are indeed a couple of control parameters of calculations, which may yield
different answers by the input value. The statement that only atomic num-
bers are required as input is merely a slogan of first-principles researchers.
Actually, serious working experience is needed. This makes beginners to
hesitate to work on.

This manual is written to alleviate the barriers and pains which begin-
ners suffer. The intended level of this manual is such one that beginners
can acquaint skills of professional calculations by self study alone. Special
attention is paid that not specialists but experimentalists use this package
in order to interpret their obtained data.

I should mention in advance that this English edition is not complete
translation from the original Japanese text. Owing to the authors limited

1This is average Japanese impression to the name, first-principles. I don’t know how
natural these naming sounds to Western people. Linguistically speaking, plural form is
used only when special meaning is added. Furthermore, it is difficult to accept such an
idea that there are many first things. Here is a reason why Japanese is easily disrupt to
distinguish between countable and uncountable nouns.
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ability of English, some parts are omitted, and the English text was not well
polished out. I solicit the readers generosity in this regard.

History

As in many other programs, Osaka2k is also not created by one person,
despite that only one person is indicated as the author in this manual.
Here, by writing the names of contributors, I would like to express my
acknowledgments to those pioneers.

A program atom which generates atomic pseudopotentials is created by
Troullier and Martins [10], which itself has the long history. Osaka2k uses
it as it were.

Development of the core program of Osaka2k is dated back to 1987 at To-
hoku University. There, under the direction of Prof. Katayama-Yoshida, Dr.
N. Orita (Now, AIST) as the primary writer and Dr. T. Sasaki (NIRIM),
and T. Nishimatsu (Tohoku Univ.) developed a first-principles molecular
dynamic simulation program, named cpgs at that time, which based on
Car-Parrinello method. The primal use of cpgs was study of impurities
in semiconductors at that time, and for this purpose, cpgs had been com-
pleted. Therefore, they are really the parents of this program. cpgs had
been developed there until 1995.

However, the purpose of cpgs was limited, several deficients were found,
such as only Γ−point sampling, no use of symmetry, etc. After Prof.
Katayama-Yoshida moved to Osaka Univ. at 1995, the present author began
to rewrite it in order to use of crystal symmetry fully, and multi k sampling.
In this process, the author reconstructed the code in order to make use of
TSPACE [24] created by Prof. A. Yanase. In addition, the core part of SCF
calculation was replaced with the method of Teter-Payne-Allan [18], and
functions of atomic optimization etc had been added.

At the same time, band, DOS, phonon calculations were developed by
the author. Until the fall of 2000, all the components had been integrated
all together. This was the original form of Osaka2000, which was opened to
public at 2000.

After that, the whole codes were rewritten from beginning by new For-
tran 90 under unified direction of programming design. This yielded a com-
pletely new version ”Osaka2002 nano”
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legal matters

As usual, we cannot owe any social responsibility for consequences of using
this program package. The correctness of obtained result is after all users’
responsibility, even though we paid our best efforts for the program codes
to be correct.

When you publish papers, which use data obtained by ”Osaka2k”, please
cite Osaka2k in text or references. ”Osaka2k” is of course just a name of a
program, so that readers cannot understand which method is used, if only
this name is written. In this case, some of the original papers, which Osaka2k
is based on, should be cited. To what extent should be cited is kind of tast,
but when you do not have any idea about this, we recommend the following
two papers.

As to used potentials, Troullier-Martins [10], As to calculational method,
a review paper by Payne et. al. [19].

As to graphics of band diagram, there is no need to say anything when
elemental drawing like 7.5 is used. But when using high-quality graphics
like Fig. 7.6, you should refer program ayband created by A. Yanase.

source codes

The source codes can be obtained from the following site,
http://www.cmp.sanken.osaka-u.ac.jp/~koun/osaka.html

When you find program bug or errors in the manual, please send mes-
sages to
koun@sanken.osaka-u.ac.jp



Chapter 1

THEORY

In this section, the underlying principles of Osaka2k are described. Though
it is more appropriate to study the basics of densiy functional theory (DFT)
by standard textbooks, some conceptions and technicals are explained in
some length here, because especially those topics written in paragraphs 1.7
and 1.5 are rarely treated in usual textbooks.

1.1 Density functional method

Theoretically, the properties of solid can be obtained by solving the eigen-
states of total Hamiltonian of the system. In the atomic unit system, non-
relativistic Hamiltonian of the system is given by 1

H = −
∑

i

∇2 +
1

2

∑

i6=j

e2

|ri − rj |
+

∑

i

Vion(ri) + Eion({Rn}), (1.1)

where i− and j-summations take over all electron positions, Rn nth-atom
position、Vion(ri) atom potential at ri, and Eion({Rn}) the ion-ion direct
interaction.

Most of the properties of the system being in interest such as the total
energy of the ground state, atom force, electron density and electrostatic
potential, etc. can be obtained by solving Schrödinger equation:

HΨ0({ri}) = E0Ψ0({ri}) (1.2)

1Usually, e2 is set to 2 in the atom unit system, however, there are Rydberg unit and
Hartree unit even if it is named atomic units, to avoid this confusion we left e2as it was
here.

8



CHAPTER 1. THEORY 9

One of attempts of non-empirical method to obtain the properties of
solid is to solve the equation of the many-electron Hamiltonian (1.1) di-
rectly. In practice, the equation (1.2) is often rewritten through a Slater
determinant which is composed of a lot of single-electron wave functions.
This is the so-called Hartree-Fock approximation, where only the exchange
effect is considered. In many problems, it is known that the exchange term
only is not good. Further developments in order to include the correlation
effect into account, many methods, such as the configuration interaction
by expanding on many Slater determinants and the quantum Monte Carlo
method, etc, have been devised.

Anyway, these approaches are all based upon the wave functions and
express the electronic states of solid through the set of wave functions. In
the configuration interaction method, the combination of wave functions is
very complicated, resulting in severely the limitation of the size of problems.

Meanwhile, for the many-electron problems, another and very different
approach called the density functional theory has been proposed. In this
approach, the electron density is the quantity, from which the theory is de-
veloped. To solve one-electron equations which are derived from the density
functional theory is much easier than solving Eq. (1.2). The correlation ef-
fect is taken into account, and the size of the system which can be handled
is far larger. Since 1980, this method has established a position as one of
the main methods of calculating the properties of solid and molecules from
the first principles.

The work by Hohenberg and Kohn [1] is now known as a fundamental
reference as the density functional theory. In this work, it is shown that
the ground states energy of electrons is a unique functional of the electron
density. Furthermore, given external potential, It is shown that the ground-
state energy can be obtained by minimizing the energy functional, with
respect to the electron density. When the density is the true ground-state
electron density, this minimizes the energy functional. In a subsequent paper
by Kohn and Sham [2], it is shown that the energy functional is recast by
using orbitals as EKS({Ψi}) subjected to the orthogonalization condition of
the set of one-electron wave functions Ψi(r)

EKS({Ψi}) = −
∑

i

fi

∫
Ψi∇2Ψid

3r +

∫
ρ(r)Vion(r)d

3r

+
e2

2

∫
ρ(r)ρ(r′)

|r − r′|
d3rd3r′ + Exc[ρ(r)] + Eion({Rn}),(1.3)

where EKS is Kohn-Sham functional energy, the i-summation takes over all
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one-electron orbits, fi the number of occupations in i-state, Exc the exchange
energy, and ρ(r) is the charge density and given by

ρ(r) =
∑

i

fi|Ψi(r)|2. (1.4)

The wave functions Ψi(r) which minimize the Kohn-Sham functional energy
in (1.1) satisfy the following eigenvalue equations

HKSΨi = εiΨi, (1.5)

where HKS is Kohn-Sham’s Hamiltonian

HKS = −∇2 + Vion(r) + VH(r) + Vxc(r). (1.6)

Here, VH(r) is Hatree-Fock potential

VH(r) =

∫
ρ(r′)

|r − r′|
d3r′, (1.7)

Vxc is exchange correlation potential

Vxc(r) =
δExc[ρ]

δρ(r)
, (1.8)

and εi and Ψi denote the eigenvalues and eigenfunctions of the Kohn-Sham
equation, respectively.

The wave functions calculated by Eq. (1.5) yield the charge density by
Eq. (), which is just ρ(r) appearing in the Hartree-Fock and exchange
potential. Hence, the Kohn-Sham equation must be solved self-consistently.

It seems that Eq. (1.6) plays a role of Schrödinger equation of one-
electron wave function, but the thought underlying these equation is quite
different. For the case of Hatree-Fock, the wave functions are treated as
the most important quantity, and the charge density is second one, in other
words, a dependent variable. On the other hand, in the density functional
theory, the charge density comes first. Wave functions are something expe-
dient, so that they are allowed to vary as far as the charge density is the
same.

There are a lot of good reviews about density functional theory and
which will be described in the next paragraph ([3, 4, 5]).
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1.2 Local Density Approximation

A price of mathematical simplification of the density functional method,
which replaces the many-electronic problem by one-electron problem is paid
by introducing unknown functional of exchange and correlation Exc of the
charge density. Fortunately, there is an easy approximation for Exc. The
most widely used form of Exc is the so-called local density approximation
(LDA). That is, the exchange and correlation energy of uniform electron
gas, which is well studied, is used. In this approximation, the exchange-
correlation energy at each point of the real space, Exc(r), is assumed to
equal to that energy of a uniform electron gas with the same charge density.

Exc =

∫
εxc(r)ρ(r)d3r, (1.9)

where tVxc(r) is exchange potential and given by

Vxc(r) =
δExc

δρ(r)
=

∂{ρ(r)εxc(r)}
∂ρ(r)

. (1.10)

Then εxc(r) is
εxc(r) = εhom

xc [ρ(r)], (1.11)

where εhom
xc is the exchange-correlation energy in a uniform electron gas of

that charge density. Actual form of the exchange and correlation energy as
the function of the charge density is constructed, based on the most reli-
able studies about homogeneous electron gas, such as [7] or quantum Monte
Carlo method [6]. Within the local density approximation, the exchange and
correlation potentials become a local function of the charge density. Tremen-
dous of calculations of for solids and molecules have shown effectiveness and
accuracy of this approximation.

1.3 Pseudopotential Approximation [8]

The second approximation which follows the local density approximation is
use of pseudopotential. The wave functions of solid is expended here through
the set of plane waves. Plane-wave expansion it is uneconomical to describe
localized states, such as core states of atoms which exhibit strong oscillations
in the core region. Fortunately, the physical and chemical characteristics of
many materials are governed by the valence electrons which extend to more
wide region, and the core states are insensitive to those properties. We then
can make an approximation by using valence electrons solely in describing



CHAPTER 1. THEORY 12

the chemical combining characters of materials. Therefore, needed poten-
tials have relatively slowly varying characters and this is desired properties.
The wave functions which simulate the valence electrons accords to that
are called the pseudo-wave functions. The good reviews of pseudopotential
method can be found in Ref. [8].

The pseudopotential are constructed so as they describe as much pre-
cisely as possible the electron scattering characters outside the core region.
Good pseudo-wave function are called ”transferable”. In general, pseudopo-
tentials of an atom have different scattering characters in each angular mo-
mentum and are non-local. Mathematically, pseudopotentials can be ex-
pressed as,

V̂NL =
∑

l

|lm〉Vl〈lm|, (1.12)

where lm〉 is spherically harmonic functions, l and m are the angular mo-
mentum, and the projected angular momentum, respectively. The original
bare potential is or course a local potential. Because the true wave function
and the pseudo-wave function are matched outside the core region, non-
locality of pseudopotential is limited in the core region. For light atoms,
adding of higher than 2 components, l > 2, into a set of pseudopotentials is
not necessary. Though many empirical potentials had been devised in the
past to construct pseudopotentials [8], a great step had been achieved by in-
troducing the concept ”norm conservation” of wave function by Hamann[9].
As a result, it is not an exaggeration to say that pseudopotential method
came to be used most generally today as a method to solve the problem of
solid. In this procedure, a nodeless pseudo-wave function is initially taken
so as to match to the true wave function outside core radius rc. A norm-
conserving condition, along with other conditions, the final form of potential
is completed. The process is depicted in Fig. 1.1.

In Osaka2k, the Troullier-Martins type by which the efficiency of the cal-
culation is more improved is adopted as pseudopotential by ”norm preser-
vation” type[10].

The pseudopotentials defined by expression (1.12) may be called semi-
local one. The reason is that it is local for the radical element of the position,
though it is non-local for the angle element. Kleinman and Bylander pro-
posed the full-nonlocal type by which the radical element is treated non-local
[11]. According to this, the potential is recast by

Vion = VL +
∑

lm

∣∣Φ0
lm∆Vl〉〈∆VlΦ

0
lm

∣∣
〈Φ0

lm |∆Vl|Φ0
lm〉

(1.13)
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rc

pseudo wavefunction

↑

↑
true wavefunction

pseudo potential

↑

↑ Z/r

Figure 1.1: Outline of pseudopotential A true wave function (solid

curve) can be replaced with a pseudo-wave function (dashed curve).

Wave function and potential of all electrons are the same each other in

the chemically important area outside the core radius rc

where Φ0
lm is the pseudo-wave function of the atom when the pseudopotential

is constructed. ∆Vl is obtained by

∆Vl = Vl,NL − VL. (1.14)

Giving nonlocal potential in this way, the calculation of non-local part of the
potential is greatly accelerated. Further benefit is obtained in calculation
of operating of nonlocal potential onto wave functions if the arbitrariness of
VL is utilized.
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1.4 Plane-wave expansion

There are about ∼ 1023 atoms in real crystals. It is intractable to solve
directly the KS equation for the system with such degrees of freedom, which
is virtually infinite dimension. For such a system, it is convenient to use the
artificial mathematical tool of Born-von Karman’s boundary condition and
Bloch theorem[13].

Not only plane-wave method, but almost all the calculation methods of
solids undergo a benefit of the periodical boundary condition. For problems
of surface of solids, defects, and even for completely disordered solids, we
can study these materials by assuming large super cells, which are of course
artifacts though.

A mathematical model of a crystal is constructed from three basic trans-
lational vectors in the real space:

t = n1R1 + n2R2 + n3R3, (1.15)

where n1, n2, n3 are arbitrary integers. The lattice constructed from the
primitive translational vectors is called Bravais lattice. Crystals are ex-
pressed by combining a Bravais lattice and the basis, which is composed of
all the atoms in the primitive unit cell.

The reciprocal lattice space is defined for a lattice in the real space. The
basic translational vectors of the reciprocal lattice space are defined so as to
satisfy

Ri · Gj = 2πδij , (1.16)

where i and j take an integer value from 1 to 3. Now, we have G1 as

G1 = 2π
R2 × R3

R1 · (R2 × R3)
. (1.17)

G2,G3 can obtained by cyclic change the indeces. The lattice vectors of the
reciprocal lattice (reciprocal vector) can be expressed as

G = n1G1 + n2G2 + n3G3 (1.18)

where n1, n2, n3 are arbitrary integers.
Reciprocal vectors are used for Fourier transformed expression of arbi-

trary functions with periodicity. When f(r) is a smooth function of {R},
we can expand it by

f(r) =
∑

G

AGeiG·r, (1.19)
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Under the periodic boundary condition, the electron state is specified
by the wave vector k and band index n. The wave function has a form of
product of a plane wave exp(ik · r) and a periodic function uk(r) with the
lattice periodicity,2

Ψkn(r) = exp(ik · r)uk(r). (1.20)

This is what Bloch theorem states, which reduce greatly a problem of solids
from nearly infinity to the orders of the number of atoms in the unit cell. 　

There are many kinds of band calculations, but these are different merely
at a point of the ways to express wave functions, i.e., basis functions, except
the cellar method.

Because uk(r) in Eq. (1.20) is a periodical function of the lattice, it can
be expanded by the reciprocal lattice vectors according to Eq. (1.19), and
then is expressed by,

Ψkn(r) =
∑

G

ck+Gei(k+G)·r. (1.21)

Because plane waves satisfy the Bloch’s condition by construction, they
provide a good expression as valence electrons in crystal, which are extended
over the crystal. Various quantities of the ground states can be expressed
neatly by this expansion. On the other hand, a disadvantage of this method
is slow convergence (see Ref. [8]).

The total energy Eq. (1.3) is written by plane waves, [14]

Etot =
∑

i,G

|cki+G|2(ki + G)2

+
1

2

∑

G

ρ∗(G)VH(G) +
3

4

∑

G

ρ∗(G)Vxc(G)

+
∑

G

ρ∗(G)S∗(G)VL(G) +
∑

i,l,G,G′

c∗ki+Gcki+G′

×S(G′ − G)V NL
l (ki + G,ki + G′) + Eion({Rn}), (1.22)

where S(G) is the structure factor. In addition, the Hellmann-Feynman
force and stress, etc, can be evaluated also easily by this plane wave expan-
sion, which will be seen later.

2Alternatively, the exponential form can be taken as exp(−ik · r). In this program, to
keep consistency with TSPACE, we decided to the definition of Eq. (1.20)
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The last term of Eq. (1.22) is the so-called Ewald term, which corre-
sponds to the direct Coulomb interaction between ions

Eion({Rn}) =
e2

2

∑

κ,κ′

ZκZκ′γκ,κ′ , (1.23)

where κ is the atom index in the lattice cell, and γκ,κ′ is given by

γκ,κ′ =
∑

l′

′
erfc

(
η

∣∣R
(

l′

κ′ κ

)∣∣)

R
(

l′

κ′ κ

)

+
4π

Ωc

∑

G 6=0

′ 1

G2
exp

[
−

(
G

2η

)2
]

exp [iG · (xκ − xκ′)]

− 2η√
π

δκ,κ′ − π

2η2Ωc
. (1.23a)

Here, κ 6= κ′ is understood in the primed summation. η is so taken as the
summation over the real space and that on the reciprocal space in Eq. (1.23a)
becomes good convergent. (see. Ref. [15], p. 385)

1.5 Plane-wave cutoff

Eq. (1.21) is a summation over infinite number of reciprocal lattice vectors
G. In actual calculations, this summation of course has to be truncated at
somewhere. In practice, only plane waves whose kinetic energy is smaller
than the certain cutoff energy Ecut (atomic unit) are chosen, as

|k + G|2 < Ecut. (1.24)

This means that a sphere is defined in the reciprocal lattice space, and all
the wave vectors inside the sphere (its radius kc), are included. See Fig. 1.2.
Then, the plane wave cutoff radius is given by

Ecut = k2
c (1.25)

Number Npw of plane waves inside the cutoff radius k can be estimated
by

Npw =
4π
3 k3

c

(2π)3

Ωc

(1.26)



CHAPTER 1. THEORY 17

kc

k i

kc

FFT Box

}

NGDIM(a) (b)

Wavefunction
sphere

Charge-density
sphere

Figure 1.2: (a) Expanding plane waves for ki. (b) relationships between
plane wave sphere, the charge density sphere, and FFT box.

where Ωc is the volume of the primitive lattice cell.
Number Npw of plane waves needed for good convergence depends on

the atom type in the primitive unit cell. In general, the systems containing
elements of 1st row in the periodic table need a cutoff energy larger than
system containing only elements of 2nd or 3rd rows.

1.6 k-space summation

In the calculation of the total energy and forces, taking an average of oper-
ator Q̂ which acts on the Kohn-Sham wave functions is often needed.

According to Bloch’s theorem, the average over all the wave functions is
calculated by

Q =
Ωc

(2π)3

∫

BZ
Qkd3k, (1.27)

where Qk is given by
Qk = 〈Ψkn|Q̂|Ψkn〉. (1.28)

For example, in the case in which Q̂ is Kohn-Sham Hamiltonian, Qkn is the
eigenvalue of Kohn-Sham equation, and Q is the average value of the band
energy of n-th band.
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In the numerical calculation of Eq. (1.27), the integral can be replaced by
the summation of finite points in k-space, and it usually takes a lot of time.
However, with choosing wisely enough a set of special points, we could obtain
as accurate as by using much more k points. This is called the special point
sampling method. In our program, the method by Monkhorst and Pack [16]
is used as the standard special point sampling method. The mesh of k points
is created by three integers of N1, N2, and N3. These integers determine the
density of k points in a primitive unit cell of reciprocal lattice. A general
point of the mesh is given by

krst = u1rG1 + u2sG2 + u3tG3 (1.29)

uip =
2p − Ni − 1

2Ni
, (1.30)

where p takes a value from 1 to Ni. This mesh makes N1N2N3 pieces of
k points in the Brillouin zone. Therefore, the integral of (1.27) is replaced
with the summation of discrete k points.

Q =
1

N1N2N3

∑

rst

Qkrst
(1.31)

Some k points are occasionally points on symmetry line or planes. If some
k points are connected each other by symmetry, it is enough to solve the
Kohn-Sham equation at only one point of the group of symmetry-connected
points (stars). By using symmetry, computation time can be greatly saved.
In Osaka2k, the number of k points is decreased as much as possible by
properties of crystal symmetry and time-reversal symmetry.

The quality of the special-point sampling is accessed by the cutoff vectors
of the real space. Periodical functions of the reciprocal space like Qk can be
expressed by the Fourier series in the real space

Qk =
∑

R

BReik·R, (1.32)

where BR are expansion coefficients. B0 is the average of Qkn over the
Brillouin zone. Usually, the Fourier coefficient BR decreases rapidly with
increasing |R|. Inserting (1.32) into (1.31), we get

Q = B0 +
∑

R 6=0

BRφR, (1.33)

where φR can be written by

φR =
1

N1N2N3

∑

rst

eikrst·R. (1.33a)
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The summation of φR over R 6= 0 can be regarded as an error of Q for a
particular set {rst} of sampling points. By classifying R through |R|, i.e.,
shell structure of R, the summation of Eq. (1.33) can be grouped by shells,
as

ith shell∑

R

φR. (1.33b)

As the shell sum vanishes to further extent, the qualify of the sampling
points becomes better.

1.7 Conjugate gradient method in Kohn-Sham func-
tional

Next, it is necessary to solve Eq. (1.3). A traditional method to solve
this is to diagonalize Eq. (1.5) self-consistently so that the output charge
density and input charge density become to match. In this method, the
output charge density is returned to as the input of the next step, by mixing
it with the old input charge density. How set the mixing rate is subtle
problem. Especially when the size of a crystal becomes large, adjustment of
the mixing rate is indeed a tough business. The conjugate-gradient method
in Kohn-Sham functional is an excellent method to solve this difficulty. We
will explain in detail below.

Based on the arguments so far made, to seek the ground states of a crystal
is equivalent to a problem of minimizing the total energy EKS({ck+G,n})
by varying plane-wave expansion coefficients {ck+G,n} of all the occupied
bands.

It is known that conjugate-gradient method is an efficient mathematical
technique to find the minimum point of multi-dimensional functions f(x).
Especially, when f(x) can be approximated by quadric form,

f(x) =
1

2
x · A · x − b · x + c, (1.34)

and when A is positive-definitive, one can always find the minimum point,
at least in principle.

Because a gradient of function f(x) at x is given by

−∇f(x) = b − A · x, (1.35)

the minimum point x satisfies the following linear equation

A · x = b. (1.36)
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Conjugate-gradient

Steepest-descents

Figure 1.3: Comparison between the steepest descent method and conjugate
gradient method

A primitive approach to solve this minimization problem is first to evalu-
ate Eq. (1.35) at a trial point x0, which is followed by the line-minimization
in the gradient direction. When the minimum point x1 on the searching line
is found, the gradient of that point is evaluated and then the minimization
in this new gradient direction is performed again. This process is repeated
until some criteria is met. This method is called steepest-descent method.
Though this is an intuitively easy way, the process is inefficient, as shown
in Fig. 1.3: there are many steps repeated in the valley of potential.

When this inefficiency of the steepest-descent method is analyzed, one
can find that the same searching direction is examined by many times.
Once one direction is searched, further repeating is waste of time. In the
conjugate-gradient method, this unnecessary repeating is avoided by a clever
way.

In the conjugate-gradient method, it is assumed that the minimum points
xi were found in the searching direction hi in i-th step. Next, the gradient
gi is evaluated at this point. With taking xi as the new starting point, the
searching direction hi+1 of the next step i + 1 is given by

hi+1 = gi + γihi, (1.37)

where the mixing ratio γi is determined by

γi =
gi+1 · gi+1

gi · gi
. (1.38)
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This searching direction is called the conjugate-gradient direction. As can
be seen in Fig. 1.3, by searching in this direction the minimum point is found
very efficiently.

Moreover, in this method, the explicit form of matrix A is not required,
because A always appears in the form of the product with vectors x. There-
fore, if A · x can be efficiently evaluated, then not only the calculation be-
comes fast, but also saves the memory.

According to the density functional theory, the energy functional has the
minimum at the true ground-state charge density, while it is increased for all
the other density distributions. Therefore, the conjugate-gradient method
discussed above is suitable to find the ground state of a crystal. However,
in adapting this method to the present problem, there are troublesome re-
strictions that wave functions must be normalized and that wave functions
must be orthogonal each other. This makes the conjugate-gradient process
in the present problem more complicated.

These difficulties were overcome, and a more effective conjugate-gradient
method was proposed by Teter, Payne, and Allan(TPA) [18, 19]. Osaka2k
follows the algorithm of this TPA algorithm.

In this algorithm, the set of initial wave functions that are orthonormal-
ized are prepared for the occupied bands of each k point. They are generated
from random numbers by default. The conjugate-gradient minimization is
applied to a single band of the first k point in order to minimize its contribu-
tion to the total energy, while the other bands are fixed. Conjugate-gradient
processes are performed several times to the first band, and then turn to the
next band. After scanning all the bands of the k point, proceed with the
next k point. Scanning all the k point constitutes one iteration. This whole
process is also repeated several times.

The conjugate-gradient process to one band of n-th is described in more
detail below through the referring to figure 1.4.

1. Kohn-Sham energy functional EKS corresponding to the wave function
{ck+G,n} = Cn of the n-band leads to one electron Hamiltonian H of
Eq. (1.6). The expected value corresponding to the wave function Cm

n

of n-th band in the m-th step is given by

λm
n = Cm∗

n · H · Cm
n . (1.39)

As a result, the residual error Rm to this Hamiltonian determines the
direction of the steepest-gradient direction,

Rm = − (H · Cm
n − λm

n Cm
n ) . (1.40)
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TRIAL WAVE FUNCTION FOR BAND

Calculate steepest-descent vector

Orthogonalize to all bands

Precondition vector

Orthogonalize to all bands

Determine conjugate direction

Orthogonalize to present band and
normalize

Calculate Kohn-Sham energy of
trial value of 

�

Calculate value of 
�

 that minimizes
Kohn-Sham energy functional

CONSTRUCT NEW TRIAL WAVE FUNCTION

REPEAT
N TIMES

or
UNTIL

CONVERGED

Figure 1.4: Flow diagram of the direct minimization method

The mean square of this Rm is called the residual error ξm of wave
functions.

2. This residual error vector Rm is corrected so as to orthogonal to other
bands of the k point:

R′m = Rm −
∑

r 6=n

(Cr · Rm)Cr. (1.41)

3. To accelerate the convergence, this corrected residual error vector R′m

is preprocessed (preconditioning). That is, a suitable weighting matrix
K is multiplied in order for all the diagonal elements of R′m to be of
the same order of magnitude,

R′′m = R′m · K. (1.42)
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In practice, the matrix K is so constructed as a diagonal matrix, whose
diagonal element is given by the inverse of the corresponding element
of R′m roughly.

4. Modifying R′′m again so that it is orthogonal to all the bands including
itself.

Gm = R′′m −
∑

r 6=n

(
Cr · R′′m

)
Cr −

(
Cm

n · R′′m
)
Cm

n . (1.43)

5. Using this Gm, the conjugate gradient is obtained. That is,

Fm = Gm − γmFm−1 (1.44)

is given for the conjugate gradient. The mixing ratio γm can be ob-
tained from Gm according to Eq. (1.38). γ0 can be set to be 0 as the
initial condition.

6. Fm is orthonormalized with the present band again. We denote it by
Dm. By this way, the line minimization problem in the direction Dm

becomes in turn the minimization problem of the total energy EKS(θ)
as a function of θ.

Cm+1
n = Cm

n cos θ + Dm sin θ. (1.45)

7. Since EKS(θ) is a function of the density, and the density is propor-
tional to the square of the wave function, if EKS(θ) can be approxi-
mated to be linear in the density, EKS(θ) may be expressed by

EKS(θ) = const + A cos 2θ + B sin 2θ. (1.46)

Because there are three unknown numbers in Eq. (1.46), three equa-
tions are necessary. Value EKS(0) with θ = 0 has already been evalu-
ated, and its derivative is also obtained easily as,

∂EKS

∂θ

∣∣∣∣∣
θ=0

= 2fnRe(Dm∗ · H · Cm
n ) (1.47)

Because H ·Cm
n has already been evaluated, Eq. (1.47) is obtained by

only taking the scalar product of vectors. B in Eq. (1.46) is half a
value given by Eq. (1.47).
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8. The remaining variable can be obtained either by evaluating EKS(θ)
with θ1 6= 0 or by calculating the second derivative of EKS(θ) at θ = 0.
We will use the later way here. By this way, A is given by A =
(1/4)∂2EKS/∂θ2. Then, θmin minimizing Eq. (1.46) is determined by

θmin = −1

2
tan−1


−

∂EKS

∂θ

∣∣∣
θ=0

1
2

∂2EKS

∂θ2

∣∣∣
θ=0


 (1.48)

1.8 Fast Fourier transform

An important part of calculation in the conjugate-gradient method is to
operate the Kohn-Sham Hamiltonian on the wave functions. In the program,
this step is carried out by using the Fast Fourier Transform (FFT). Osaka2k
utilizes the fact that the kinetic energy is local in the reciprocal space, and
that local potential is diagonal in the real space.

Given the number of basis function Npw, calculation of the kinetic en-
ergy from in the reciprocal space needs arithmetic operations O(Npw) in
Eq. (1.22). On the other hand, because the local potential is a matrix of the
size Npw, the calculation in the reciprocal lattice space needs operations of
O(N2

pw). This operation can be accelerated by rewriting with a real space
representation,

∑

G′

VL(G − G′)ck+G′,n =
1

Ωc

∫
e−iG·rVL(r)

∑

G′

eiG′·rck+G′,nd3r. (1.49)

From Eqs. (1.20, 1.21), we see that summing ckd + Gd gives

ukn(r) =
∑

G′

eiG′·rck+G′,n. (1.50)

Therefore, the evaluation of Eq. (1.49) is:

1. To convert the wave function ck+G,n expanded in the reciprocal space
into the representation ukn(r) in the real space.

2. To take the product of ukn(r) and VL(r) in the real space.

3. To convert the result to its representation in the reciprocal space.

Though this three-step calculation seems more involved than the direct prod-
uct of V ·C in the reciprocal space, it actually is superior in terms of com-
putation speed.



CHAPTER 1. THEORY 25

Because the operation of 2 is actually a diagonal sum in the real space,
the number of floating-point arithmetic is only O(Npw). Operations of 1 and
3 needs only the number of floating-point arithmetic of order O(Npw log(Npw)),
when FFT is used. The number of overall operation is therefore still order
of O(Npw log(Npw)). This technique was devised by Car and Parrinello[20]
and has become widespread.

It may be worth to notice the region on which FFT is performed. The
wave functions are expressed in a spherical region with the radius kc, in
which Npw plane waves are involved, as shown in Fig. 1.2 (a). On the
other hand, in order to express the charge density faithfully for varying
wave functions, we must take a sphere of the twice radius in the reciprocal
space. See the figure (b). As a result, the rectangular region on which FFT
is performed is the length of4kc. The mesh in the reciprocal space is almost
the same as that in the real space. According to Eq. (1.26), the number of
mesh points in the real space, NFFT is given by

NFFT
∼= 16Npw (1.51)

1.9 Hellmann-Faynman forces and stresses

Hellmann-Faynman theorem enables us to calculate atomic forces and stresses
easily.

In a material, a force exerted on an atom whose position is given by RI

is given by energy derivative with respect to RI

FI = −dEtot

dRI

= − d

dRI

〈Ψ|Ĥ|Ψ〉 (1.52)

By this definition, in order to estimate atomic forces, the total energy must
be evaluated at several (at least two) points of RI .

Hellmann Faynman theorem reduces this task considerably,[21] In vertue
of this theorem, Eq. (1.52) can be recast as

FI = −〈Ψ|∂V ({R})
∂RI

|Ψ〉 (1.53)

At a glance, difference between Eq. (1.52 and (1.53) might seem not
significant. But, the difference is definite. In Eq. (1.52), wave function
Ψ has implicitly dependence on atom positions. Once atom positions are
changed, Ψ must be recalculated. On the other hand, in Eq. (1.53), Ψ is
the wave function at the equilibrium positions. Schrödinger equation is once
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solved, and only once is enough. What you have to do is merely integration
of wave function over new external potential. The latter task is much easier
than performing another SCF calculation.

Evaluation of forces and stresses can be done straightforwardly in plane-
wave expansion. Because the basis functions are fixed in the real space,
application of Hellmann-Feyman theorem is simple and yield no correction
term, such as Purley correction.

For concrete expressions, see [14] for atom forces, and se [22, 23] for
stresses.3

Information of atom force is utilized for optimization of atom positions,
Similarly, information of stresses is utilized for cell optimization.

It should be noted that in general convergence speed about force and
stress is much slower than that of the energy. The total energy is a variable
with respect to the change in wave functions. This means that the varia-
tion of the total energy around the equilibrium state is second order in the
variation of wave function. On the other hand, the variation of force is only
the first order.

3In Ref. [23], in Eq. (2), the sign appearing in front of kinetic energy is mistyped as
−.
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Load Map

2.1 Overview

A electronic-structure calculation package of ”Osaka2002” based on pseu-
dopotential method is actually a set of several program codes. The relation-
ship between them is shown in Fig. 2.1.

In brief, given a crystal, which is constructed by cryst, prepare atomic
potentials of constituting the crystal by atom, carry out self-consistent field
(SCF) calculation by pwm. inip does preparation to pass some parameters
to pwm.

The core of Osaka2002 is pwm. Once SCF calculation is completed, we
have several choices to proceed further. Among them are optimization of
the crystal, phonon calculation, molecular dynamics simulations.

If you need to know details of electronic spectra, band and DOS calcula-
tions can be obtained by pwbcd. pwbcd has an option to display wavefunc-
tions in the real space.

atom is a program to generate pseudopotentials, and is independent of
the rest of the package Osaka2k.

Throughout all the calculations, full use of crystal symmetry was made.
This is accomplished thanks to a library TSPACE.

2.2 Preparation

directory structure

After downloading the source codes, expand in a suitable directory. On ex-
pand, you will see four directories, as shown in Fig. 2.2. Users should create

27
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(inip)

Preparation

(pwm)

(pwbcd)

DOS calc.

Band calc.

WFs disp.

(cryst)
Create a crystalGenerate atom pseudopotentials

(atom)

Self-Consistent Calculation

constant T

constant Tp

Molecular Dynamic Simulation

Atom optimization

Cell optimization

under pressures

Phonon calculation

Figure 2.1: Overiew of Osaka2002

a directory /bin, in which executable codes are stored. For users conve-
nience, we add a directory /drivers, which is not shown in the figure. In
this directory, machine-dependent files and Makefile are stored. Users should
add a working directory /data, in which you will carry out calculation.

All the source codes are put in directory /fsrcs, along with Makefile.
These are copied into directory /bin, and are compiled to create executable
codes. These executable codes will be copied or linked into a working direc-
tory which contains a crystal data you want to calculate, such as /sidat in
the figure.

Directory /input contains template files for input.

The current version of Osaka2002 is featured by being reusable; once
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fsrcs/

bin/

Makefile

pwm
inip
cryst

all the sourc codes

ppot/ si.pot si.pwf
c_.pot

generatorwycoff
rel/
spn/

psmap.datmat.d
patom/ atomk.f

atom.dat

/atomscript
...

data/

input/

sidat/
grdat/
...

si.xtl

...

...

copy and make

linkcopy
pwm.para
inip.para ...

nom/

com/

Figure 2.2: Directory structure of Osaka2002

executable codes are compiled, there is no need to recompile them when a
crystal or calculation conditions are changed. In a previous version written
by old Fortran, many calculational parameter should be given before com-
pilation, and thereby recompilation was needed whenever these parameters
or crystals were changed. Only one exception is TSPACE, because this was
written at so old age.

compile

First of all, find Makefile, drivs.f90 suitable to your machine in /drivers,
put these in /fsrcs. Then, edit /drivs.f90 as described latter. When you
like to get benefits of the maximum performance of your machine, further
arrangements, such as in fft util.f90, may be needed. Some of techniques
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are described in ”Installation Manual of Osaka2002”.

Copy Makefile in /bin, type

% make prep

Then, all the needed files are copied in /bin.

All the executable codes are created by Makefile. For inip,

% make inip

For pwm,

% make

After comilation, unnecessary files will be deleted by commands

% make clean

or

% make clobber

For pwbcd, which carrys out band, DOS calculations along with others,

% make pwbcd

Atom potentials are created in /patom, the data files should be restored
in directory /ppot.

2.2.1 machine dependence

After copied necessary files in /fsrcs, modify these in order to meet your mi-
chine. In /drivers, machine-dependent codes such as Makefile, drivs.f90,
are put in according to specific machines. Suitable ones should be moved to
/fsrcs, and add modification.

In drivs.f90, find a subroutine potdir, and edit a part

CHARACTER(LEN=15) :: datadir = ’/home/user/ppot’



CHAPTER 2. LOAD MAP 31

in order to meet your environment. This is the directory in which atomic
potentials are restored. Note that LEN is exactly matched to the length of
datadir. It is our observation that, even though datadir is correct, the
length is often wrong, so that it failed to find the potential files.

pwm uses a mathematical library lapack. Describe the method to link
this library in Makefile, according to your system construction. TSPACE

is troublesome, because this is written by old style Fortran. Some of tips
of handling TSPACE is described in Appendix of ”Installation Manual of
Osaka2002”

For TSPACE users
TSPACE enclosed in this package is basically the same as that
of Ref. [24]. However, in order to make more flexible to treat
variety of materials, some parameters are written in a separate
file TSPARAM and the file is included at the compilation time.
Therefore, TSPACE in this package must be used.

2.3 Input parameters

Every program in the package requires input data, as usual. These data are
commonly written in a file named as *.para. The format of these files will
be described in order to appear. Here, notices applied commonly in these
files are described.

One of problems which came to be clear on the course of the program
development, is that, at every time program revision is made, input param-
eters are subjected to change. In case this is often happened, to rewrite the
manual only due to minor changes is indeed troublesome for both of the
writer and users. In many cases, actually such a minor change of parameter
does not relate to the uses of average users. On the basis of this painful
experiences, we decided that a standard file *.para explicitly keeps only
few parameters, which are frequently used. Others are added when needed.
The way to add these parameters is to use option input.

2.3.1 Input options

Options are to be added according to user’s special needs. Because these
extended features are continuously progressed as the program is developed, it
is not suitable to describe this kind of text. These things belongs to details
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of revision, so that these are described separately in a form of Technical
Report Series associated with Osaka2002.

Here, we describe only general rules in adding options, which are common
in every *.para file.

First of all, keep distinction of upper and lower cases, i.e., options are
case sensitive.

After describing general input parameters, make one empty line, then
type

OPTION BEGIN

specify each option followed by
OPTION END

During these description, do not insert blank lines.

There are two types of options.

1. toggle variables
fermi broadening ON

Type the name of variable, and put one (and only one) space, followd
by ON/OFF.

2. value variables
pressure=

1.5

Type the name of variable, followed by= without any space. Then,
after carriage return, its value is typed after at least one space. When
a real number is entered, type for example 300. even when the value
is just 300.

The available options are subjected to change as the program code is
developed, refer Technical Report Series, or a source file auxinp.f90. In
directory input, there is a file opts list, which lists all the implemented
options.

This completes file preparation. Now, we can proceed to creation of atomic
potentials in the next chapter
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Atomic pseudopotentials

One feature of contemporary pseudopotential method is that a part of cre-
ating potential can be separated from the rest of bulk electronic structure
calculation. Currently, there are several program codes to generate pseu-
dopotentials. Package Osaka2k uses one of such program, atom, which is
developed by Troullier and Martins. Hence, we cannot owe responsibility
for this program, even though we will explain sometimes principles underly-
ing this code. Although utility of this program is really wide, we restricted
our concerns to those related to pwm.

The source code is atomk.f in directory /patom.1。
To create atom, type

f77 atomk.f -o atom

After creating an executable atom, generate atom pseudopotentials needed
one by one 2

3.1 input file

First, edit an input file atom.dat. The format is as follows,
The meaning of each line is as follows

1st line type of calculation (itype) and title(ititle).
As types of calculation,
itype=

1The original code is atom.f. Only change made in atomk.f is output format in order
to meet the input of pwm

2Although the code is well developed, there is still some machine dependence. These
are referred to ”Installation manual”

33
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Table 3.1: Format of atom.dat

itype ititle

ikerk
nameat icorr + ispp
znuc zsh rsh rmax aa bb
ncore nval

n l zo↓ zo↑ evd
...

rcs rcp rcd rcf cfac rcfac

• ae: all-electron calculation

• pg: generation of pseudopotential

• pe: generation of pseudopotential with core correction with
respect to the exchange-correlation term

• ph: generation of pseudopotential with core correction including
the Hartree term

• pt: test of pseudopotential

• pm: test of pseudopotential and modification of valence elec-
trons

2nd line kind of pseudopotential (ikerk)
ikerk=

• tm2 Improved Troullier and Martins

• bhs Bachelet, Mamann, Schuter

• oth generate data file

• van Vanderbilt

• tbk Troullier and Martins

• yes Kerker

• no Hamann, Schluter, Chiang

3rd line atom name(nameat) and options(icorr + ispp).
nameat is just atom name. icorr+ispp is consisted of three characters.
The first two corresponds to icorr and gives the type of electron-
correlation functional. Those available are
icorr=
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• ca Ceperly-Alder (Perdew-Zunger parameterization)

• xa Xα method

• wi Wigner interporation scheme

• hl Hedin-Lundqvist

• gl Gunnarson-Lundqvist-Wilkins

• bh von Barth-Hedin

The third character corresponds to ispp and gives a selection
ispp=

r relativistic calculation

s spin polarization

t none

4th line charge number of nucleus (znuc), charge of inner core (zsh), core
radius (rsh), maximum radius(rmax), parameters of radial mesh(aa,
bb).

5th line number of core orbitals(ncore) and number of valence orbitals(nval)

after 5th line occupation of the valence orbitals specified by n and l(zo).
The orbital energy as option input (evd).

last line cutoff radii for generating pseudooptentials(rc).
Further parameters are added when core correction is needed (cfac
and rcfac).

Atomic orbitals are specified by three quantun numbers, i.e., the princi-
pal quantum number n, angular-momentum l, and its azimuthal component
m, even when spin freedom can be ignored. In atom (and most of other
programs of this kind), spherical potentials are assumed. This treatment
means, for example, when there is only one electron available among px,
py, and pz orbitals, each orbital is occupied equally by 1/3 electron. This
keeps the dimensionality of problem within only one dimension. Otherwise,
the problem would become essentially three dimensional one, for which so-
lutions become much more complicatd. Therefore, third quantum number
m is ignored.

In the following, we explain how to specify these parameters, taking Si
as example.
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pg Silicon

tm2

n=Si c=ca

0.0 0.0 0.0 0.0 0.0 0.0

3 2

3 0 2.00 0.00

3 1 2.00 0.00

2.13 2.57 1.50 1.50

The first line gives the code of calculation kind, name of atom, while the
second gives the kind of pseudopotential. For now, we write as

pg generation of pseudopotential

tm2 Improved Troullier and Martins

The third line is written as shown. The forth line is ignored. Leave it
alone.

The fifth line gives the numbers of core and valence orbitals, which are
specified by two quantum numbers n and l. In the present example of Si, the
neutral atom is configured by (1s)2(2s)2(2p)6(3s)2(3p)2. This means that
there are three core orbitals; 1s, 2s, and 2p, while two 3s aned 3p orbitals
are included as the valence orbitals.

Next, occupation numbers are followed. In each line, one valence orbital
is described by specifying n, l, the number of occupation of down-spin and
up-spin. In the present case, spin freedom is ignored, the occupation number
of only down-spin is used. For Si, two electrons are occupied for 3s and two
are occupied 3p orbital.

The last line gives the cutoff radii for generating pseudopotentials in
order of s, p, d, f orbitals. Values are given in atomic unit.

3.2 execution

We explain the basic usage of atom. Advanced usage of it should be referred
in related Technical Reports.

1 All electron calculation First, all electron calculations including all
core orbitals must be performed. Set pg as the type of calculation, 3

3All electron calculation is originally performed by setting ae. But, in the process
of generating pseudopotentials, all electron calculation is performed before creation of
pseudopotential.
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At this moment, you may do not wary about the values of the cutoff
radii. Putting a data file atom.dat in the same directory as atomk, execute
atomk.

2 Read an output file atom.out In an output file atom.out, results of
all-electron calculation is written. The eigen-energy of all the orbitals are
listed, along with information about the shape of orbitals along in the radial
axis. Users are encouraged to plot orbitals. For doing so, fort.11 can be
used.

In file atom.out, after

radial grid parameters

the characteristics of each orbital in the radial direction is listed, as

n = 2 l = 0 s = .0

a extr .634 -1.373

r extr .057 .458

r zero .153

r 90/99 % .903 1.348

This describes the features of 2s orbital. This orbital has two extreme and
one zero point other than the origin. The position of zeros are given by r

zero in Bohr units. r extr indicates the position of extreme. Users should
check if the obtained orbitals behave as expected.

Next, determine the cutoff radii for generating pseudopotentials, by see-
ing the shape of valence orbitals. There is to a large extent arbitrariness in
choosing the cutoff radius rc. This arbitrariness causes beginners confusion
(not only beginners but experts too). At the first trial, it may be taken to
be 1.1 ∼ 1.6 times larger than the position of the most outer extremum,
by rule of thumb. It can be set to be inside of the most outer exremum,
as far as it still is outside of the most outer zero point. In general, as rc is
set to be larger, the obtained potential becomes soft and consequently good
convergence is achieved. A bad news is degradation of transferability.

One feature of the Troullier-Martins type is that rc can be larger than
others such as Bachelet et. al. [12]. The cutoff radii are written in the last
line of atom.dat.

3 Generating pseudopotentials After deleting all the previous output
files, again execute atom. Then, all the needed files are created. The pseu-
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dopotential and pseudo-wave functions are written in fort.10. Users are
again encouraged to see these as graphics output.

In fort.10, wavefunctions and potentials are listed in order s, p, ... Each
data are listed as two column data; the first is the radial position and the
second is the value of wavefunction/potential. At the first, the number of
mesh points appears.

The pseudopotential data as output is the bare-ion one, which the elec-
tronic contribution has been removed, and the wavefunction u(r) is normal-
ized as it were. This means that it holds

∫ ∞

0
|u(r)|2dr = 1 (3.1)

but not
∫
· · · rdr.

4 Give the names for data files Finally, take binary files pseudo.dat01
and fort.13 among various output files. The former is the potential data,
while the latter is the pseudo-wave function data. These files are actually
used in the following calculations. Rename these and saved in directory
/ppot/nom. The file name of potential should be (atom name).pot, and
the name of wavefunction should be (atom name).pwf. Atom name is given
by two characters. In the present case, these are si.pot and si.pwf, re-
spectively. In case of C, underscore should be followed, such as c .pot and
c .pot. The name characters should be written by lowercase. It should be
noted that *.pot and *.pwf files are usable only on the current platform,
since these data are written binary format. When platform is changed, then
potential and wavefunction data should be recalculated on that platform.

5 Repeat if necessary The above process is repeated for used atoms.

To what extent can we take as the valence electron?

As studying various materials, you will find it problem to determine which
electron is counted as the valence electron and which is counted as the
core electron. For light elements, such as Si, this seems definite. But,
for 4f elements and heavy elements, such distinction becomes difficult. In
addition, we are further embarrassed with questions as to what configuration
of electrons should be used as the reference state when pseudopotentials are
constructed.

All of these problems are essential problems in the pseudopotential method.
As a guide, we supply input templates for all the elements in /patom/atomscripts.
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However, this is by no means the best set, nor even correct. When you begin
to suspect these supplied data, and when try to change the input data to
see how the result is influenced, then this is a sign that you are qualified as
a real and active researcher in this field. You will search the literature and
discuss a problem to other researchers.



Chapter 4

Construction of crystals

4.1 Input of crystal data

Crystals are described by the lattice of the unit cell and the atoms con-
stituting the lattice. The primitive unit cell is the minimum lattice which
preserving the translational symmetry. However, more large cells called as
conventional unit cell are often used due to practical reasons.

In the primitive unit cell, the unit translational vectors are expressed
by a set of R1, R2, and R3, while in the conventional unit cell the unit
translational vectors are expressed by a set of a, b, and c.

When referring the coordinate (h, k, l) without any notice, we cannot
say which of hR1 + kR2 + lR3 or ha + kb + lc is meant by. The former
is said as the expression in the primitive base, while the expression in the
conventional base. Correspondingly, the reciprocal lattice is expressed by
G1, G2, and G3 in the primitive base, while a∗, b∗, c∗ in the conventional
base.

Usually in the crystallographic literature, a crystal is described in the
conventional base, by using three lengths, (a b c), of the lattice vectors and
its three angles (α, β, γ), where α means the angle between b and c axes,
and so on.

In cryst, by using a, b, c, α, β, and γ, the lattice vectors are translated
in the cartesian coordinated, as

a = ax̂

b = b(cos γx̂ + sin γŷ)

c = c(cos βx̂ + rŷ +
√

1 − cos2 β − r2ẑ) (4.1)

40
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where r is given by

r = (cos α − cos β cos γ)/ sin γ.

In case of the rhombohedral crystal system, definition of the cartesian
coordinates given by Eq. (4.1) is inconvenient, because the 3-fold axis is
not in the z-axis. Therefore, only in this case the 3-fold axis is taken as in
the z-axis, as an exceptional case. The cartesian coordinates of this case is
shown in Fig. 4.1. The 2-fold axis is taken as in the x direction.

Basically, the physical properties calculated are independent of the way
of the cartesian coordinates. But, for example, the eigenvectors of phonons,
elastic constants are expressed only when the coordinate system is specified.

t1t2

t3

h1

h2

x

y

Figure 4.1: Way of taking the crystal axis for the rhombohedral crystal
system. The 2-fold axis is taken in the x direction, while the mirror plane
intersects to the y axis.

When you try to read the source code, you will find that conversion of the
coordinates is scattered over the codes. TSPACE employs the conventional
base, while pwm employs the primitive base. In addition, for the above
reason, the cartesian coordinates are sometimes used. Therefore, conversions
between different coordinate systems are inserted indeed many times, which
makes the code more difficult to be read.

The crystal data are written in a file name.xtl For example, crystal GaAs
is described by gaas.xtl,
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TITLE GAAS

DIMENSION 3

CELL

5.65315 5.65315 5.65315 90.00000 90.00000 90.00000

SYMMETRY NUMBER 216 QUALIFIER ORIGIN_1

ATOMS

NAME X Y Z POT CHARGE TEMP OCCUP SCAT

GA1 0.00000 0.00000 0.00000 ga 3.0000 0.5000 1.0000 GA

AS1 0.25000 0.25000 0.25000 as 5.0000 0.5000 1.0000 AS

This data format accords to that of a commercial program ”INSIGHT II”
of MSI. Therefore, it can be read by ”INSIGHT II”.

In the data form, first TITLE and DIMENSION 3 appear. Then the lattice
parameters follow. These are expressed as

a, b, c, α, β, γ

in the conventional base in the Å or degree units.
Next comes the number of the space group and QUALIFIIER if desired.
Then, the relative coordinates of each atom is listed. Note that the

coordinates are expressed by being relative to the conventional unit. You
will find this treatment convenient in most cases. However, there is many
confusions in the trigonal system. In this case, we accords to the policy
described in Ref. [26], where the problem is well analyzed. When the Bravais
lattice belongs to the rhombohedral unit, the relative coordinates should be
described with respect to the rhombohedral axes. In this case, QUALIFIER
is set to be Rhombohedral. However, even when the Bravais lattice belongs
to the rhombohedral unit, the relative coordinates are sometimes described
with respect to the hexagonal unit. In this case, these coodinates can be
used as it were by setting QUALIFIER to be Hexagonal.

Description of crystals is indeed complicated. As to further reading
about this problem along with others, refer to a supplement ??.

Users are required to distinguish several quantities concerned with the
number of atoms in the unit cell. 1

Nat : the total number of atoms in the primitive unit cell
1In the current version of Osaka2k, all the include files in pwm were discarded, so that

these parameters are no longer used explicitly. Despite, it is still important to know the
meaning of these parameters. Actually, even in the current version, TSPACE still uses its
include file, in which some of these parameters appear.
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Nspe: the number of chemical elements constituting the crystal

Nka : the number of distinct atom sites (irreducible sites), which are not
connected by symmetry

Distinction between Nspe and Nka is important. In the former classification,
all the atoms are counted as one, if these atoms are the same chemical
element. On the other hand, in the latter classification, even when the
atoms are the same chemical element, they are counted as different kinds if
they cannot be transformed by crystal symmetry.

For example, in graphite crystal, these parameters are

Nspe = 1, Nka = 2, Nat = 4

In a file *.xtl, it is not necessary to list all the atom coordinates in
the primitive unit cell. Listing only prototype atoms at the irreducible sites
suffices. Hence, only number Nka of atoms appear in the list. Other atoms
are created by symmetry operations in cryst. In the package or home page,
files many crystals are available, so that you can exercise how to describe
crystals.

In a line, NAME comes first. This name is arbitrary. Next, three relative
coordinates come, followed by the name of potential. This name of potential
is the one by which the correct potential data file is searched, so that it must
be the same as the name of the potential. For example, for Si atom, you
should type si. For C, you shoud type one character c followed by one
space, as ct.

The remaining data are not used, accordingly you can omit them. 2

Description of QUALIFIER accords to ”International Tables for Crystal-
lography” (ITC) [25]. These available descriptions are

ORIGIN 1 or ORIGIN 2

For the trigonal system,

RHOMBOHEDRAL or HEXAGONAL

For low-symmetry crytals,

UNIQUE b or UNIQUE c

2In a previous version, the next data of valence number was required. Now, this is not
necessary. These data are read in from /ppot/com/psmap.dat
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and

UNIQUE b,CELL 1, 2 or 3

Due to the restriction of TSPACE, for base-center lattices, only C center is
acceptable. Hence, when the data are described in another center, it should
be rewritten on C center, and specify CELL n as QUALIFIER

4.2 Execution of cryst

Next, execute cryst by using data *.xtl. As an output, you will get *.prim.
After this point, all the calculation refers *.prim as the crystal data, but not
*.xtl. It may useful to remember that all the data in the calculation after
*.prim are expressed in the atomic units. Only in output, some conventional
units are sometimes used. In this case, explicit units will be given. Hence,
if specific units are not given, the atomic units are assumed.

First place a file si.xtl in a working directory /sidat, then execute
cryst. You are asked to answer

input the crystal name with a period at the end.

> si.

You should type as above, including a period at the last.

The output file si.prim should be checked.
Title and date appear, and the conventional unit cell, primitive unit cell,

the reciprocal lattice vectors in the cartesian coordinates are followed, as

TITLE GAAS

date: Fri Jan 5 17:56:20 2001

DIMENSION 3

LATTICE PARAMETERS (A,B,C,CA,CB,CC) in a.u.

10.6829045 10.6829045 10.6829045

0.0000000 0.0000000 0.0000000

Space group

216 Td2 F-43m ORIGIN_1

IL NG NC

2 24 1 ORI

The conventional vectors

10.6829045 0.0000000 0.0000000

0.0000000 10.6829045 0.0000000

0.0000000 0.0000000 10.6829045

The primitive vectors
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0.0000000 5.3414522 5.3414522

5.3414522 0.0000000 5.3414522

5.3414522 5.3414522 0.0000000

The primitive reciprocal vectors without 2Pi

-0.0936075 0.0936075 0.0936075

0.0936075 -0.0936075 0.0936075

0.0936075 0.0936075 -0.0936075

IL, NG, and NC, which are parameters of TSPACE, are the type of lattice,
the order of crystallographic point group, and the number of choices of the
origin.

By using the space-group number, the crystal structure is constructed.
It is important to check the output crystal structure. Nspe and all the chem-
ical elements in the crystal are listed. Then, Nka comes, and the Wyckoff
positions of each sites are follows

Number of atom species

2

No Name Zat Zval

1 ga 31 3

2 as 33 5

KIND OF ATOMS

2

Wycoff Positions

ATM ( x, y, z) Nos Wycf Code

1 ( 0.00000, 0.00000, 0.00000) 1/ 1 4a 0 0/1 0 0/1 0 0/1

2 ( 0.25000, 0.25000, 0.25000) 3/ 1 4c 0 1/4 0 1/4 0 1/4

NUMBER OF ATOMS

2

L.L. AND U.U. VALENCE ELEMENT

1 1 3.0000 1 ga

2 2 5.0000 2 as

POSITIONS RELATIVE TO A UNIT CONVENTIONAL CELL SPECIES SYM(IG)

1 0.0000000 0.0000000 0.0000000 1 ga 1

2 0.2500000 0.2500000 0.2500000 2 as 1

After Wyckoff positions, Nat appears. After subtitle L.L. AND U.U., all
Nat atoms are classified as Nka cites, each line lists the range of those atoms
belonging to an irreducible site. One line also contains the valence number,
so that you should check it. Finally, relative coordinates of every atoms are
listed.

Note
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On the outset, we should confess that quality of cyrst is less
than other components of Osaka2k, in a sense of described be-
low. cyrst attempts to determine Wyckoff positions by given
coordinates and the space group information. Because 230 kinds
of space groups are so complicated, this attempt in the present
code does not guarantee to always success. For more details, re-
fer to a supplement [?]. When it failed, cryst assigns the failed
cite to a general point. Accordingly, user should take care of this
assignment. If the assignment is wrong, you are required to fix
manually. to a supplement [?].

Notations of Wyckoff positions accords to those of ITC. Its positional
code accords to those ofTSPACE. This is composed of three components. In
each component is composed of an integer and a fraction number. The
integer part means that 1, 2, and 3 means the relative coordinates x, y,
and z, respectively, while 0 means just 0. When sign - are preceded to x,
then negative value of x is meant. The fraction number are added to the
integer part. For instance, {1 0/1 2 1/4 -2 1/4} means a coordinate
(x, y + 1

4 , −y + 1
4).

4.3 Control parameters

So far, there is no case where users are required to modify parameters. For
most cases, the default values of TSPARAM will suffice. But, if you want to
calculate a large-size crystal, these default values may be insufficient. In
this case, you are required to modify these by yourself.

TSPARAM are directory read and used in TSPACE, but these parameters
are transformed explicitly or implicitly to other programs, such as cryst,
inip, and pwm, and hence you should be care of setting these parameters.

PARAMETER (LMNATM=50,LMNKAT=20)

PARAMETER (MAXNPW=4854)

LMNATM specifies the upper limit for Nat in the unit cell, and LMNKAT specifies
the upper limit for Nka. Therefore, it is recommended to take larger values
than those actually used.

MAXNPW specifies the upper limit of the number of planewaves. But, the
number of planewaves here is different one in pwm. Hence, you can set a
value smaller than that used in pwm.
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4.4 Graphics display of crystal structure

At this level, users must want to check correctness of crystal data by graph-
ics, as well as numerics. Few people if not could imagine a crystal figure by
numerics only, but most cannot do so without help of graphics.

There are many tools (commercial or public domain) to display crystal
structures. Osaka2k offers a set of Mathematica notebooks to analyze re-
sults. Among them, CrsytAnal.nb analyzes the data *.prim. In order to
display crystal structures, you are required only few input parameters, such
as file name, in this Mathematica nootbook. Mathematica is very flexible,
and I like this in data analysis. But, if you want to analyze further, for
example, to calculate bond lengths or angles, you may need to knowledge
for Mathematica.

Figure 4.2: GaAs crystal. The red line indicates the primitive unit cell.

You will feel that commercial programs are easier to use than Mathe-
matica nootbook. On the other hand, if you want to do further analysis,
you may find after all that efforts as much as to understand Mathematica
nootbook is required.

Although I do not here describe how to use Mathematica nootbook,
those people who know the basics of Mathematica would not be difficult to
understand that. Appendix A helps those people to use.

In Fig. 4.2, an example of crystal structure drawn by CrystAnal.nb is
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shown.



Chapter 5

Ground states of electronic
structures (I)

5.1 inip

Before proceeding to pwm, some preparations are needed. This is done by
inip. 1

One important purpose of inip is to expand the basis set of plane waves,
given cutoff radius kc in the reciprocal space. Count the number of plane
waves Npw, and the cut the FFT box out. The relationships of the size of
kc to NGDIM and NG3, which determine the FFT box, are shown in Fig. 1.2.
The length of one edge of FFT box is 2*NGDIM+1 in the k space, and the
one in the real space NADIM=2*NGDIM.

Another purpose of inip is to determine k sampling point on the sum-
mation over the Brillouin zone, which is discribed in the next section.

A input file inip.para looks like as follows,

Input file name (priod is needed at the end)

si.

Parameters about k points

Cutoff k radius (AMAX) given by lattice index without 2Pi

3.1

way to give sampling points (0:given manually, 1:calc)

1In the previous version, the chief purpose of inip is estimation of the size of matrices
appearing in pwm, in order to write them in a include file. In the current version, all the
include files have been discarded, and accordingly such roles of inip is unnecessary. But,
other things which are done by inip are still needed, and hence inip is left as being
separated from pwm

49
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pwm

inip

inip.para

{

pwm.para

pwm_si.out
pwm_si.sum
pwm_si.etot
pwm_si.eks
pwm_si.frc
pwm_si.rho
pwm_si.wfn
(pwm_si.vrs)
pwm_si.inp

pwm_si.wfn

/ppot/ data

        

        
si.pot
generator ...

inip_si.out

inip_si.kpt

inip_si.rmesh

inip_si.inp

si.prim

si.xtl

cryst

Figure 5.1: relationships among various files of pwm

1

number of k-sampling points

2

potential type (spin, NLCC, relativistic)

0 0 0

In the following, the meaning of these parameters are explained.
First the name of crystal comes with a period, which is followed by the

cutoff radius for the plane wave expansion

• the cutoff radius of the plane waves (AMAX)
the cutoff radius for the plane wave expansion kc is given in the units
of minimum value of the primitive reciprocal vectors gmin.

• Way of giving k sampling
1: automtic calculation, 0: manual input
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• number of segments of k sampling (NKDIV)
number of segments of k sampling when automatic calculation

• options for pseudopotential
list of potential options. Three options are spin, core correction, and
relativistic effect. 1 indicates ON, while 0 indicates OFF. These op-
tions are the same as those for pseudopotential-generation program
atom, and thereby both must be the same.

Any information of potential type used pwm is inherited from the above
parameters in inip. and accordingly no specification appears in pwm.para.

5.1.1 specail k-point sampling

There are several ways to giving k sampling points, as shown in the following.

(i) Automatic calculation
(isotropic and uniform sampling ≡ defualt)

When automatic calculation is chosen, k points are determined according
to the method of Monkhorst-Park as described in Sec 1.6.[16] In default, the
first zone is divided by M , indexing from (−M + 1)/2M to (M − 1)/2M in
each of three principal direction in 2π/a units.

For example, when M = 1, only Γ is sampled. WhenM = 2, there
are 8 points, i.e., (1/4, 1/4, 1/4) and ones changed with every sign. In a
real crystal, further reduction of k points is achieved, because of crystal
symmetry and time-reversal symmetry.

In Fig. 5.2, a feature of Monkhorst-Park is compared to that of beginner.
A beginner would take first the center point, next the zone boundary points,
and further proceed by taking the midpoint. On the other hand, Monkhorst-
Park method avoids the zone center point and the boundary points as far as
possible. This method gives better accuracy than that of beginners on the
same computational task.

Even numbers for M is recommended, except when M = 1.
This value of M is given for input NKDIV. The determined sampling

points and the total number is written out in an output file inip *.inp, as

nkpts

2

Sampling point in p

LD -1 -1 -1/ 4 WTK= 0.250000

XY 1 -1 -1/ 4 WTK= 0.750000
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amateure?

0 1/2-1/2

Ndiv

1

2

4

8

Monkhorst-Pack mesh

0 1/2-1/2

1/4

1/8

1/16

Figure 5.2: Comparison of k-point mesh between the method of Monkhorst-
Park method and of amatua. In Monkhorst-Park method, the zone-center
and zone-boundary points are avoided as far as possible.

In the above example, for an input M = 2, the final number of sampling
points, nkpt, only two. Remember the initial number of created k points
is 8. Symmetry reduced greatly nkpt. You can see that these points are
(−1/4,−1/4,−1/4) and (1/4,−1/4,−1/4) in the primitive base, and the
sampling wights are 1/4 and 3/4, respectively.

(ii) Automatic calculation (anisotropic sampling)
For crystals which are significantly anisotropic, such as super lattices,

the above isotropic sampling is inefficient. In this case, anisotropic mesh is
desirable. For doing so, optional parameters are available.

In inip.para, at the end of basic parameters, place one blank line, which
is followed by

OPTION BEGIN

anisotrop_ksample=

1 1 4 4

OPTION END

By declaring anisotrop ksample=, the uniform division NKDIV previously
given is made no effect. In the next line, the first three numbers mean the
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segment numbers for the three primitive vectors g1, g2, and g3, respectively.
The last one means the least common multiple (LCM) of first three integers.
Since inip does not check correctness of this LCM, users should be careful
for giving this number.

(iii) Manual input
Automatic calculation for giving k sampling point is convenient. On the

other hand, there are cases in which a more flexible way to give sampling
points is needed. In this case, user can specify sampling points manually.
A user should determine sampling points by himself. The way of giving the
points determined is as follows,

The portion from 6 to 9 lines in the above list for inip.para is replaced
with

way to give sampling points (0:given manually, 1:calc)

0

number of k-sampling points

4

KB(3), ICB

-1 -1 -1 4

1 0 0 4

0 1 0 4

0 0 1 4

This example gives four points (1/4, 1/4, 1/4) and (1/4, 0, 0) and its cycli-
cally changed points.

For the hexagonal system, other sampling method such as Chadi-Cohen
algorithm [30] may be useful. In this case, the sampling points are given in
this way.

When the number mesh points is small, a way of k sampling is critical.
For example, when the total energies are compared among various polymor-
phic modifications, equivalent sampling method is important. Super lattices
and polytypes of SiC are good examples [31].

In any method, it is desirable to estimate how used sampling is good.
To do so, use of Eq. (1.33b) is made. In the section of inip *.out,

=====> Final report for k-point sampling <=====

you will find a list as

Quality of sampling by 2-points...

list only nonzero shells up to 41 shells

Sh No shell sum
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8 ( -1.00000, 0.00000)

15 ( 1.00000, 0.00000)

23 ( -1.00000, 0.00000)

26 ( -1.00000, 0.00000)

28 ( 1.00000, 0.00000)

32 ( -1.00000, 0.00000)

36 ( 1.00000, 0.00000)

38 ( 1.00000, 0.00000)

This is a list of only those shell sums in Eq. (??) which gives no zero. In
the example shows that the shell sum vanishes up to 7th shell.

5.1.2 Cutoff radius of planewaves

Another important parameter is the cutoff radius (AMAX) for plane wave
expansion. The dimensionless input parameter AMAX is related to the cutoff
radius kc in the k space by

kc = AMAX ∗ gmin, (5.1)

where gmin is the minimum length of the three primitive reciprocal vectors.
The cutoff energy Ecut is given by Eq. (1.25) in the atomic units.

For each sampling point ki, all the plane waves G which satisfy Eq.
(1.24) are taken as the basis set. Accordingly, the number of plane waves
Npw differs slightly from point to point.

In an output file inip *.out, you will find an example as

=====> Final report for k-point sampling <=====

For cutoff energy in Ry = 4.959185

NHDIM = 59

NGDIM = 4

nkpts= 2

Name: LD -1 -1 -1/ 4 NSTR= 8 WTK= 0.25000 NPW= 55 INV= 6

Name: XY 1 -1 -1/ 4 NSTR= 24 WTK= 0.75000 NPW= 50 INV=18

Sum over WTK 1.000000

From this, you see that point (−1/4,−1/4,−1/4) and (1/4,−1/4,−1/4)
have different Npw, 55 and 50, respectively. The basis set of these points are
stored in an output file inip *.kpt. inip determines the dimension of the
array of basis set (NHDIM) as the maximum of these Npw’s, i.e., 59.

Along with NHDIM, parameters used for pwm are summarized in the last
section of inip *.out, as

Passed parameters

NEPC 8 NEDIM 4
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NKPTS 2 NHDIM 59

NGDIM 4

Then, ...

LIN SEG NGLIN 9 NADIM 8

VOL SEG NG3 729 NA3 512

As another role of inip creates a list of real-space points, which are con-
nected by the crystal symmetry. This data is stored in a file inip *.rmesh.
When there is no symmetry, i.e., the space group is P1, this file is not
created.
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5.2 pwm

The core program of Osaka2k is pwm. This program calculates the electronic
ground states for a given crystal. This is achieved by self-consistent energy
minimization for the energy functional as described in Sec. 1.7.

After creating an executable code pwm as described in Sec. 2.2, make a
copy or link pwm into your working directory.

5.2.1 SCF calculation

Input parameters for pwm is written in pwm.para. There are a couple of
parameters, which control calculations. As described earlier, we ceased to
pack all the input parameters in the standard format of pwm.para. Instead,
rarely used parameters are written by optional input, when need occurs.

A typical form of pwm.para looks like as follows,

Input file name

si.prim

Job (0:SCF Calc. 1:Atom optimize 2:Cell optimize 3:Phonon 4:MDS)

0

atom movement (0: OFF, 1: ON valid only when cell optimization)

0

number of iteration for electrons (maxIter0wfn)

15

conjugate-gradient paths (npath)

5

wftol

1.0D-11

ftol

8.0D-5

etol

1.0D-12

iread (previous WFs)

0

imoni,irhout,iwfout

0 1 1

Resume atom relaxation

0

max number of iterations for atoms (maxIter0atom)

4

Resume cell relaxation

0

max number of iterations for cell (maxIter0cell)
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2

In the following, meaning of each parameters are explained.

xtl.name name of crystal
JobNo Job type

0 : SCF calculation (default)
1 : optimization of atom positions
2 : optimization of unit cell
4 : MDS

atomMove0ctrl atom relaxation 0 : no (default) 1 : do
maxIter0wfn the maximum number of iterations for energy

minimization process with respect wave functions
npath0wfn iteration number of conjugate-gradient paths for a band
wftol tolerance of wavefunction error (Ry2)
ftol tolerance of HF forces (Ry/aB

2)
etol tolerance of energy (Ry)
iread wfn selection of initial wave functions 0: random data (default)
imoni0ctrl monitoring 0 : OFF (default)
irhout output of charge density 1: ON (default)
iwfout output of wave functions 1: ON (default)
atomMove resume resume of atom relaxation 0 : OFF (default)
maxIter0atom the maximum iterations for atom relaxation
cellMove resume resume of cell relaxation 0 : OFF (default)
maxIter0cell the maximum iterations for cell relaxation

The most important parameters are those of convergent criteria. As
described in Sec. 1.7, the electronic ground state can be found by itera-
tive minimization of the total energy. As the smallest iteration loop, the
minimization process by the conjugate-gradient method is applied to one
band at a ki point. For a band, the conjugate-gradient path is repeated
by npath0wfn. Then, this process is repeated over the all bands of nband
at a ki point. After completing this at ki, proceed to the next kj point.
After repeating over all the k sampling points, one iteration in the most
outer loop is completed. This outer loop will be repeated by maxIter0wfn,
if convergence criteria are not satisfied.

Among these parameters, the most frequently changed may be maxIter0wfn.
This value may be chosen to be about 5. SCF calculation will stop, when
the iteration of the outer loop exceeds maxIter0wfn, or when the error of
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wave functions becomes less that wftol, or when energy variation from the
previous step becomes less that etol

If you intend to achieve SCF calculation of electronic ground state only,
JobNo is set to be 0. In this case, all the remaining parameters after
atomMove resume are ignored.

For a given crystal, at the first time of calculation, set iread wfn=0. In
this case, the initial wave functions are created by random data.

As output control, there are three options to output files, monitering
(imoni0ctrl), charge density (irhout), wave functions (iwout). Usually,
set imoni0ctrl=0. Only for debugging, this will be changed. When treat-
ing a large crystal, and if you do not need further calculation than SCF
calculation for the fixed crystal, then you can save memory not to output
wave function file by setting iwout = 0. It is noted that, to save memory,
wavefunction data is written in binary file. Hence, this file is usable only on
the working machine.

On completing the above preparation, you can run pwm. When short
calculation, directory type

% pwm

After launching pwm, the process of calculation is flowing out on the display.
When long calculation, it should be put on as a background job, by

% pwm>stdout &

Because pwm prints out some output directly on the display, the above redi-
rection for output is needed, otherwise causes output error. When the job
is put on a queue system, keep instructions of the system.

It is important to estimate the calculation time for a given crystal. As
a guide, we include benchmark tests in a directory bncmrk. This was done
for a crystal containing 8 Si atoms. Various platforms were examined. You
can acquaint some idea about how long calculation is taken.

5.2.2 Interpretation

On completing calculation, pwm outputs various files as shown in Fig. 5.1.
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　 pwm *.out: log record

　 pwm *.eks: KS levels

　 pwm *.frc: Hellman-Feynman forces

　 pwm *.etot: total energy

　 pwm *.sum: summary

　 pwm *.rho: charge density

　 pwm *.wfn: wavefunction (binary format)

Among them, the most important one is pwm *.etot. The file begins
with a description of calculation type and conditions, as

==================== CALCULATION PARAMETERS ==============================

JOB Type:

Self-consistent Electronic Calculation

Potential Type:

spin = 0 nlcc = 0 relativ = 0

KLEINMANN-BYLANDER TYPE FULLY SEPARABLE FORM

Ceperly-Alder type electron-correlation functional

maximum l = 1

...

A description of crystal follows. User should check these descriptions.

After the title of SCF calculation, the file describes the essence of
iterative minimization of the total energy,

==================== SCF calculation ===========================

iter Eel deE Xsi nst/bk aglmax

(Ry/cell) (Ry/cell) (Ry^2/cell)

==== =============== ============ ============ ======== =============

1 1.1167068599 -7.3979E+00 2.4698E-02 5/ 0 0.637356581

2 0.9919043641 -1.2480E-01 4.3798E-05 5/ 0 0.128972346

3 0.9916634496 -2.4091E-04 5.6158E-08 5/ 5 0.003105065

4 0.9916631217 -3.2783E-07 3.6162E-10 4/ 11 0.000173636

5 0.9916633948 2.7304E-07 2.3709E-11 2/ 6 0.000009096

CG process is stopped because increase in Eel 2.7304E-07

.....

Etot Eel delta E resid iter

============== ============= ========== ========== ===

-15.8051160963 0.9916633948 2.730E-07 2.371E-11 5

• iter: step number of iteration
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• Eel: the energy of electrons Eel

• ∆E: change in Eel from the previous step

• ξ: residual error in wavefunction, Eq. (1.40)

• the number of paths actually carried out/ the number of back path: usually
the former number is equal to the set value npath. But, at sometime, the
conjugate-gradient paths are stopped before reaching the npath step, because
of satisfaction of other criteria of convergence. At sometime, the minimiza-
tion process fails by some reasons. The electron energy may be increased. If
this happens, then the conjugate-gradient process for this band is stopped,
and the number of such an event is counted as the number of back path.

• θ: the maximum value of mixing angles of all the bands, θ, in Eq. (1.45)

As shown in the example, as the process proceeds, Eel is decreased,
accordingly the absolute of ∆E, ξ, and θ are also decreased. The process
is stopped at step 5, because|∆E| < etol. Then, the total energy Etot is
printed at the last by adding the electrostatic energy of ions Eewald to the
converged electron energy Eel.

Next, decomposition of the total energy Etot is listed as

component of Etot

kin 5.97858894

hart 1.08391474

exc -4.78172988

loc -1.80253465

nonloc 0.51342418

ewald -16.79677949

----------------------------

total -15.80511616

This decomposition is given by Eq. (1.22). From this analysis, which con-
tribution dominates the total energy may be investigated. However, this
way of decomposition is somewhat arbitrary or is based on mathematical
convenience. Hence, users should remain that to place too much physical
meaning on them is dangerous.

For example, although the ion-ion electrostatic interaction energy, i.e.,
Ewald term Eq. (1.23) seems to be most definite, it cannot be so clearly
separated from other terms. In Ref. [23], it is shown that the Ewald term
is decreased, when a Si crystal is compressed. Because all the ions in Si
crystal have +4 charge, it will be expected that the electrostatic energy
should be increased as the inter-atomic distance is decreased. This seemingly
unexpected result is a consequence of the fact that even Ewald term is not



CHAPTER 5. GROUND STATES OF ELECTRONIC STRUCTURES (I)61

independent of other interaction terms such as ion-electron interaction in a
form of Eq. 1.22. [27]

At the last, stress components are listed as

total stress (Ry/Bohr^3)

S(1,1)= -2.24759E-05 S(2,3)= 3.17724E-10

S(2,2)= -2.24759E-05 S(3,1)= 2.52820E-10

S(3,3)= -2.24756E-05 S(1,2)= -1.10795E-10

By evaluating stresses for a given strain, we can calculate elastic constants.
The total stress also can be decomposed as for the total energy. This is done
in pwm *.strs. However, some cautions are needed in the interpretation as
for the decomposition of the total energy.

For example, the first term of the total energy in Eq. (1.22) represents the
kinetic energy. The corresponding component of the total stress is given by

∑

i,G

|cki+G|2(ki + G)α(ki + G)β (5.2)

in Eq. (2) of Ref. [23]. This correspondence is clear. But, if you interpret the above

expression 5.2 as indicating the change exactly in the kinetic energy component in

the total energy given by Eq. (1.22), it would be wrong. I means that the two is

numerically different. Hellmann-Faynman theorem guarantees that the total force

or stress are given by the change in the total energy if the true ground state is

found, but does not guarantees that each component of force or stress are given

by the change in the corresponding component of the total energy. This equality
holds only for the whole, but not for individual components.

Hellmann-Feynman forces for each atom are listed in pwm *.frc, as

HELLMANN-FEYNMAN FORCE (RY/BOHR)

ATOM X Y Z

ITER= 1

1 1 -0.230775E-08 -0.154249E-07 -0.573629E-07

1 2 0.637597E-07 0.428339E-07 0.299777E-07

These three components are expressed in the Cartesian coordinates, which
are those of used in constructing the crystal.

Accuracy of energy
In the above example, the electron energy Eel is well converged within ∆Eel <

10−8. User may be surprised to see that the value is in a good agreement with



CHAPTER 5. GROUND STATES OF ELECTRONIC STRUCTURES (I)62

each other among various platforms. This is a good news. Unfortunately, this does
not mean that this accuracy gives smallness of the error in Eel from the true value.
This merely indicates the numerical stability, even if the error from the true value
is large.

The error analysis of Eel is a complicated problem. This is an author’s suffering
not to be able to provide the definite criteria as to which extent the magnitude of
error changes for given conditions.

Let us to evaluate errors in pwm from a viewpoint of general error analysis
in numeric calculations. When referring errors in Eel, first it must be clarified
what kinds of errors are involved. On input, errors (i) in input data can occur.
During calculation, errors of (ii) rounding off and other inherent ones in digital
computations are unavoidable. Errors are also introduced (iii) by approximations
used in the calculation. All the errors are more or less amplified to yield the final
error. This process is called error propagation, and is an important concept in
numerical analysis, along with numerical stability.[29]

In the present analysis, forget the first kind of error, i.e., input error, such as
errors in a crystal structure, potentials, etc.

Let us estimate errors of kind (iii), especially, descretization errors in evaluating
the total energy expressed by Eq. (1.22). For simplicity, only a term of ion-
electron interaction is considered. It is given by an integration over the real space,∫

ρ(r)V (r)d3r. The integration is, of course, evaluated by summing over the finite

segmentations. When the integration
∫ h

−h
f(x)dx on the small finite range {−h, h}

is replaced merely by 2hf(0), the error is estimated by

1

6

f ′′

0

f0

h2 (5.3)

In the integration
∫

ρ(r)V (r)d3r, the integrand is given by a product of the
potential and the charge density. Here, we simplify a problem by taking only a
potential; ρ has merely an effect to smear the effective potential. For Si crystal, the
integration may be dominated by a contribution from the bond center, the value of
potential and its second derivatives at the region are assumed in evaluation of Eq.
(5.3), then they yield the coefficient of h2 to be ∼ 0.05. the width of mesh in the
real space h is given by a0/NADIM, where NADIM is the number of descritization
for the lattice length a0 ∼ 7. When tt NADIM=16, the relative error becomes
1 × 10−2. When NADIM=40, the relative error is barely improved by one order of
magnitude.

By using a Si crystal, actual calculation is carried out by changing Ecut to see
the effect on the accuracy of Eel. In Table 5.1, the results are listed.

As shown in the Table, when NADIM=16, the value Eel has two digits of accuracy
under the decimal point. When NADIM=40, it has four digits of accuracy (Ry/cell
units). By considering the above assumption, the agreement between expectation
and the result is good. According to Eq. (5.3), three times fine mesh is required
to obtain the accuracy of Eel by one order of magnitude, since the relative error is
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Table 5.1: Relationship between Npw and Eel for Si.

Amax Ecut Npw NADIM Eel ∆E CPU time

2.1 4.959 59 8 1.171122727 0e+0 2
2.6 7.601 113 12 1.043273992 0e+0 10
3.1 10.806 169 16 0.991663345 -8.8e-16 35
4.1 18.903 377 20 0.979594976 0e+0 53
5.1 29.249 725 24 0.974301525 -1.7e-15 106
6.1 41.843 1243 28 0.973366347 0e+0 200
7.1 56.687 1949 32 0.973159222 1.7e-15 365
8.1 73.780 2896 40 0.973127119 0e+0 658

proportional to h2. But, the calculational task increases as the cube of Npw. 2

Anyway, according to Eq. (5.3), as potential variation is more rapid, we have
larger descritization errors. This means that the convergence with respect to Npw

gets worse, when steep variation of potential.

Now we have seen how large the discretizing error is. Then, a question arises as
to whether further digits below the accuracy limit is in all meaningless or not. As
the absolute value, it is true. However, for a relative comparison, even further digits
make sense. Actually, in many cases, we are interested in relative comparison of the
total energy under various situations. If descretizing errors occur in a similar way
in such situations, then further digits still have meaning. If calculations of various
crystal forms are carried out under the same cutoff energy in plane wave expansion,
this is indeed the case. In this case, what determines the relative accuracy of the
final result is a problem of error propagation (ii), i.e., numeric stability.

Referring to [29], given an input x, we calculate the final result y by y = ϕ(x). If
the relative error in the input x due to, for example, machine accuracy, is expressed
by εx, then the relative error in the output εy becomes

εy =
x

ϕ(x)

∂ϕ(x)

∂x
εx. (5.4)

In Eq. a coefficient (5.4), (x/ϕ(x))∂ϕ(x)/∂x represents the amplification of the
error, and called condition number. Let us estimate the condition number in this
example. For a fixed cutoff energy of planewaves, by slightly changing the atom
position x, let us examine how the total energy y = Eel is influenced. In a crystal
Si8, atom at the equilibrium position (0, 0, 0) is moved in the x direction.

Ecut = 13.94 Ry and Npw = 958 are used.

2In evaluation of integral in the total energy, higher-order evaluation like Simpson
formulus may be an efficient method to avoid the cube dependence on Npw.
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Figure 5.3: The relative error in the total energy, εE, of Si8 for the input
error εu due to error of atom positions.

The result is shown in Fig. 5.3. From this figure, you can see that the condition
number is small enough over a wide range of error in u. This means numerical
stability. By the relation of εE with respect to εu larger than 10−7, we can evaluate
that εE ∼ ε2

u. This reflects that the variation of potential from the equilibrium
potision is approximated by harmonic form.

In this way, we can see that because of good numeric stability of pwm, we can

compare the total energy exceeding two digits, if the same computational conditions

are used. The problem of energy accuracy is further discussed later (in Sec. 6.1.3).

5.2.3 Recalculation

If you find that one SCF calculation is not enough to achieve good conver-
gence, then you can continue the calculation. In this case, the output data of
wavefunction is used as the input of the next calculation. User are required
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to rename the output file pwm *.wfn as inip *.wfn, and set iread to be 1
in pwm.para. Then, the next calculation will start with this wavefunction
as the initial state.

Estimation of various energies
How can the total energy obtained in this way be interpreted? We have

evaluated the total energy by the pseudopotential method, i.e., Eq. (1.22).
Therefore, only valence contribution is involved. Fortunately, most of chem-
ical properties of solids are determined by valence electron solely. Many
interested energies can be evaluated through evaluation of the total energy
by pseudopotential method.

For example, the cohesive energy Ecoh(A) of element A can be estimated
by

Ecoh(A) = E(A(gas)) − E(A(sol)). (5.5)

The formation energy Eform(AmBn) of compound AmBn can be estimated
by

Eform(AmBn) = mE(A(sol)) + nE(B(sol)) − E(AmBn). (5.6)

When comparing the energy between solid and isolated atom, it is known
that there is a problem regarding continuity of the exchange-correlation en-
ergy. This is not a problem of pseudopotential approximation, but essential
problem of DFT. There are many discussions in the literature, but here only
one of early studies by pseudopotential is cited.[28].

5.2.4 Display of charge density

After you can complete pwm without trouble, the first quantity which you can
see is the total energy. But, the energy itself is relative quantity, in partic-
ular, so in pseudopotential mathod. Even using the same pseudopotential
method, and even using the same pseudopotentials, you can see different
values between different implementations (different codes). It is almost im-
possible to justify if the obtained value of total energy is reasonable, if you
see the total energy only. In most cases, to see the charge distribution is a
good test for justifying the correctness of calculation.

The charge density in the real space is written out in file pwm *.rho. The
format of pwm *.rho is that at the top the potential types (spin, NLCC,
relativistic in input file inip.para) and the numbers of segmentations
({NAX, NAY, NAZ}) in the real space are described as

0 0 0

16 16 16

spin= -1
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Figure 5.4: A surface of equi-density of charge for graphite

After spin identification, the charge density ρ(r) = ρ(i, j, k) is sequentially
written in order that i is taken as the most inner loop, while k is as the most
outer loop.

For visualization of charge density, a Mathematica notebookChgDnst.nb
can be used. As input, a crystal data *.prim and the charge density data
pwm *.rho are used. As an example, three-dimensional plot of charge density
of graphite is shown in Fig. 5.4.

From the figure, you can see that honeycomb bonding is formed in a layer.
In this way, three-dimensional display is useful for quick grasping how the
charge is distributed. Although appealing appearance, three-dimensional
display has a disadvantage in less quantitative than two-dimensional contour
map of charge distribution. An example is shown in Fig. 5.5. There are
two C atoms in a plane z = 1/4. The thick line indicates the boundary of
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Figure 5.5: A contour map of charge density of graphite, on a cut plane
z = 1/4

the primitive unit cell, and gray points indicate atoms. The contour map
is drawn so that the more dark part is, the higher density it means. You
can see that a strong covalent bond is formed between two adjacent atoms.
Two-dimensional plotting has a disadvantage to show only one cut plane in
a plot. Hence, you should be careful not missing the whole picture.

More details of ChgDnst.nb is given by Appendix A.
Correctness of obtained charge density is judged after all by the discipline

and experience as physicist, Then, you may say that we rely on calculations
just because we do not know how the charge is distributed. If we know that,
we would not need calculations. Yes, you are right. Even for experienced
theoreticians, it is difficult to judge correctness of two different distributions,
if difference is only quantitative. We can only say that it is just beginning of
physics. In addition, even if your result is perfect in terms of calculational
technique, you should remind that the current status of the first-principles
calculation is still far from perfect. We are facing to electrons of ∼ 1023. I
like to close this section with a wise man’s saying, although it is practically
no help for the above question,

”This is not to say that it solves the many-body problem; no approach

does that – if one miraculously did, physics would be much less inter-

esting and challenging.” (Callaway), Ref. [32], p. 106
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5.2.5 Cases of wrong convergence

In most cases, SCF calculation is completed with sufficient convergence.
But, you may encounter that it is not so. In case of odd-number of electrons,
this may happen. The top of valence band is occupied only partially. In the
line minimization process of the conjugate-gradient method, the prediction
based on parabolic extrapolation is not guaranteed to succeed. In addition,
crossing of nearly degenerate levels can happen, which causes instability to
the minimization process.

This can, in particular, be serious for metals. In metals, the valence top
occurs at somewhere of the Brillouin zone. Gapless feature of metals causes
alternation of occupancy at different k points, which makes the minimization
process unstable.

There is no universal prescription for the above problem. We can only
do case by case, some of which are found in Technical Report Series. Here,
basics what we should do are described below, based on my experience.

On the outset, it should be reminded that it does not necessarily become
unstable simply because of metals. Don’t attribute instability always to the
odd-number of electrons, whenever it happens. In my experience, even for
metals, we can get good convergence, unless degeneracy occurs at the top
of bands or between different k points.

Then, when you encounter difficulty in convergence, first check whether
it is caused by degeneracy at the top valence levels. In input file pwm.para,
add an option,

allow_posE ON

Watch how the top levels are varied as the minimization proceeds. Check if
oscilation of specific band or alternation among several levels occur.

At this point, it should be care of concept of degeneracy

1. Rigorously speaking, degeneracy is predicted by symmetry reason.
However, in actual calculations, the criterion for degeneracy is made
only by numerical estimation. Hence, numerical accuracy becomes
problem. Usually, those levels which fall within some energy range
can be regarded as being degeneracy.

2. Degeneracy occurs not only for those bands at a k point, but also for
bands at different k. Convention of the band theory is that degeneracy
between different k points are not regarded as degeneracy. But, in
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the actual calculation, this kind is still degeneracy, which yield same
difficulty as the first kind.

In pwm, bands are updated by band by band. During this process, those
occupation numbers are fixed. If one or some of these levels exceed the
Fermi level, the line minimization based on parabolic extrapolation would
be failed. When this is the case, a method of broadening of occupation
number is generally useful. In pwm, Fermi broadening method is available.

Other cases of wrong convergence
You may encounter convergence problem other than the previous type.

For example, the line minimization could be failed even when occupation is
not problem. The line minimization is based on the parabolic extrapolation.
See Eq. (1.46), that the function is given by a quadric with respect to θ.
Usually, this treatment works well. But, because of nonlinearity of the
exchange-correlation functional with respect to the variation in density, this
approximation could give bad a prediction for the minimum position.

5.2.6 Related options

There are many options for controlling SCF calculations. They may be
changed from version to version.

• diagonalize OFF
By default, diagonalization of Hamiltonian is performed within the
subspace of the valence electrons at the last of each step of the energy
minimization. By declaring in this way, the diagonalization process is
omitted.

• allow posE ON
By default, the energy minimization process is stopped if the change
∆Eel is increased. By declaring in this way, the process is continued
even if positive ∆Eel is met.

• ran wfn=
1

The type of initial guess for wavefunctions. By default (1), it is created
by random numbers. Set 0, if wavefunctions constructed by specific
plane waves are used.

• vary occ ON
Make the occupation number variable. By default, it is fixed.
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• energ deg Ef=
1.0E-4

The energy criterion if energy levels are degenerate.

• nel add=
1

Electrons are added (subtracted if negative number) by a given number
(integer).

• rnel add=
0.9

Electrons are added (subtracted if negative number) by a given number
(real number).

• nband extra=
1

Bands are added by a given number. By default, the number of band
is half of the number of all the valence electrons.

• mix occ=
1.0D-1

When the occupation number is varied, weight of mixing of new and
old wavefunctions. 1 means use of completely new wavefunction (de-
fault).

• fermi broadening ON
The occupation number is determined by Fermi-Dirac distribution
function.

• T elec start0fermi=
0.1

Initial electron temperature when Fermi-broadening is applied.

• T elec end0fermi=
0.1

Distinated electron temperature when Fermi-broadening is applied.

You can see that many of options in this section are related to the oc-
cupation. Examples of real calculations are found in Technical Reports,
as

• No. 14 ”Control of the number of electron – with application to energy
gap –”
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• No. 17 ”Impurity levels in semiconductors”

• No. 37 ”Manage of electron occupation in case of odd-number elec-
trons”



Chapter 6

Ground-States of Solids (II)

Once pwm completes a SCF calculation, you have several choices on which
we work.

6.1 Atom Optimization

The total energy Etot of a crystal is a function of atom positions Ri. If
the primitive unit cell contains N atoms, Etot({Ri}) is a function of 3N
variables. The equilibrium positions of atoms are such a configuration that
the Etot({Ri}) takes minimum with respect to atom positions. Usually,
the energy function has many local minima, so that to search the global
minimum is difficult. Indeed, no algorithm can locate the global minimum
in general situations.

In this chapter, we restrict ourselves to search a local minimum on a lin-
ear theory. Hence, the obtained minimum is highly dependent of the initial
positions. While many algorithms are available for this purpose, we employ
the conjugate-gradient method based on linear approximation. By saying
linear, it is meant that the line minimization along the conjugate-gradient
direction is carried out by parabolic approximation Becase in pwm, Hellmann-
Feynman forces, i.e., energy gradient with respect to atom positions can be
easily evaluated, this method is especially effective.

By using the conjugate-gradient method, all the atoms in the primitive
unit cell can be moved to obtain the optimal structure. When we keep the
original crystal symmetry, the atom movements are restricted in order not
to violate the crystal symmetry. In other words, the atom can be displaced
in a range determined by Wyckoff positions. Therefore, for example, for Si
of the original space group O7

h, all the atoms cannot be displaced by this
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method. Only when the crystal symmetry is artificially lowered, e.g., to P1,
the atoms can be displaced.

6.1.1 Preparation of calculation

Similar to the procedure described in Sec. 5.2.3, the output wavefunc-
tions (pwm *.wfn) of SCF calculation should be prepared. Then, input file
pwm.para is edited as

Job (0:SCF Calc. 1:Atom optimize 2:Cell optimize 3:Phonon 4:MDS)

1

.....

number of iteration for electrons (maxIter0wfn)

7

.....

ftol

8.0D-5

.....

Resume atom relaxation

0

max number of iterations for atoms (maxIter0atom)

4

First, select 1 as Job Type. Set maxIter0atom an appropriate value, which
is the upper limit for the iterations of conjugate-gradient process for atoms.

In this case, the maximum iterations for wavefunction, maxIter0wfn, can
be reduced from that of SCF calculation. To use the previous wavefunction
data, rename it to inip *.wfn, and set iread 1. Now, we are ready to run
pwm.

Calculation will be ended when iterations of atom movement exceed
maxIter0atom, or when the residual force becomes less than ftol (Ry/aB

unit).
When a calculation does not end with a sufficient relaxation, you can

continue that calculation, by setting Resume atom relaxation = 1. In this
case, the atom positions are succeeded from those of which the previous
calculation achieved. This is done by reading file pwm *.var. So, you don’t
need to rewrite file *.prim. For doing so, the data file pwm *.var should be
renamed as inip *.var. As to wavefunction, of course, rename the previous
output file pwm *.wfn to inip *.wfn.
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6.1.2 Interpretation

As an example, we perform an atom optimization for a crystal Si8 whose
atom positions are slightly deviated from the equilibrium positions.

POSITIONS RELATIVE TO A UNIT CONVENTIONAL CELL TYPE SYM(IG)

1 0.0200000 0.0000000 0.0000000 1 si 1

2 0.0000000 0.5000000 0.5000000 1 si 1

3 0.5000000 0.0000000 0.4900000 1 si 1

4 0.5200000 0.4800000 0.0000000 1 si 1

5 0.2500000 0.2500000 0.2500000 1 si 1

6 0.7500000 0.7500000 0.2500000 1 si 1

7 0.7400000 0.2500000 0.7100000 1 si 1

8 0.2500000 0.7700000 0.7500000 1 si 1

As listed above, the relative coordinates are deviated at three digits under
the decimal point.

Let us apply the conjugate-gradient process to this by five times.

ATOM

ITER Etot delE rsforc frc_grd umin

==== ============== ============= ============ ============ ============

0 -63.22541053 0.000E+00 2.446E-02 -1.957E-01 0.000E+00

1 -63.27078260 -4.537E-02 5.633E-03 -4.395E-02 4.516E-01

2 -63.27326505 -2.482E-03 2.116E-03 -1.578E-02 1.127E-01

3 -63.27381923 -5.542E-04 1.847E-03 -1.079E-02 6.977E-02

4 -63.27456888 -7.496E-04 1.613E-03 -8.261E-03 1.391E-01

5 -63.27478859 -2.197E-04 4.204E-04 -3.124E-03 5.204E-02

This lists the step number of the conjugate-gradient process of atom po-
sitions, the total energy tt Etot, the change in the total energy delE, the
residual error in the wavefunction resid, residual Hellmann-Feynman force
(its average rsf and its projection onto the searching direction frgr, and
displacement per atom dx/at. As seen, the total energy, residual forces, and
atom displacements are monotonously decreased, as expected.

As a result, the final values of the relative coordinates become

Positions relative to the conventional unit cell

1 0.0036562 0.0002995 -0.0061577 1 si 1

2 0.0038705 0.5001516 0.4937230 1 si 1

3 0.5035348 0.0000587 0.4935374 1 si 1

4 0.5039569 0.4997671 -0.0063730 1 si 1

5 0.2537480 0.2497998 0.2440929 1 si 1

6 0.7537595 0.7500895 0.2440021 1 si 1

7 0.7536154 0.2498403 0.7436120 1 si 1

8 0.2538493 0.7499966 0.7435759 1 si 1
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These are in agreement with the equilibrium value by three digits under the
decimal point.

Here, I like to pull user’s attention regarding Hellmann-Feynman forces.
It should be that the sum of all the forces in the primitive unit cell is zero. In
other words, the sum of inner forces must be zero. One consequence of this
is that the displacement of atom positions is allowed up to rigid translations.
Of course, in our case, because of numeric computation, there are always
numeric errors, so that the sum of forces never vanish. Hence, how the sum
of forces deviate from zero is a test of numerical accuracy. You can see this
sum in file
pwm *.frc. After listing Hellmann-Feynman forces of all the atoms, the sum
is shown as

Check translational invariance

0.4647E-05 -0.2650E-05 0.5672E-05

This magnitude is good enough for usual purpose.

6.1.3 Error in forces

Mathematically, the residual Hellmann-Feynman forces can be reduced by
arbitrary small. In practice, once the residual forces are reduced to a some
level, further iterations do not improve accuracy any more, because of nu-
merical errors.

Let check the error in forces more closely. As discussed in 5.2.2, when
we refer to error estimation in daily calculations, what we can usually do is
to estimate relative errors, but not the absolute error. This means that we
ignore the error in the total energy obtained by using a truncated number of
the basis set from that value by using complete set. Within a fixed number
of the basis set, we estimate uncertainty of the total energy ∆E. We do
this usually by seeing the energy change ∆E in the last step of the iterative
processes. Let assume a harmonic approximation between the total energy
Etot and the deviation of atom from its equilibrium position ∆x,

∆E =
1

2
k(∆x)2, (6.1)

where k is a force constant between a pair of atoms under consideration.
Uncertainty in Etot leads to the error in position ∆x by

√
2∆E/k, i.e.,

∆x is not linear against to ∆E but its square root. Hence, uncertainty in
position is larger than that of the energy. By using a relation f = kx, i.e.,

∆f =
√

2k∆E, (6.2)
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we can conclude that the error in force is more severe than that of ∆E.
For example, let us consider Si crystal. In the direction of bond axis, the

force constant is kr ' 0.3 [Ry/Bohr2]. The energy change at the last step of
SCF calculation with respect to wavefunction is order of 1.0−7 Ry, and by
Eq. (6.2) we have an error of force, ∆f = 2.5×10−4. From this, uncertainty
in position is estimated as ∆u ∼ 1× 10−3, which corresponds to ∼ 1× 10−4

in the relative unit. This says that relative coordinates are accurate up to
four digits under the decimal point. You can confirm in the above output
file for atom relaxation that the accuracy of relative coordinates are in this
order.

6.1.4 Convergence problem

As usual, behind advantages of the conjugate-gradient method, some risks
are hindered. Here, some cases in which the conjugate-gradient process fails
are discussed.

The most prominent feature of the conjugate-gradient method, com-
pared with the steepest-descent method, resides in a way of determining
the searching direction in each step of minimization. Once the searching
direction is determined, then the minimizing process in the one-dimensional
space is the same between these two methods. Usually, parabolic approxi-
mation is used, that is, the energy function is approximated in this direction
by E(x) = ax2 +bx+c. We already have the function value (energy) E0 and
its derivative E′(0) = −f at a set of atom positions x = x0. Without loss of
generality, we can take x0 as the origin. Only another piece of information
is enough to determine completely the parabolic form E(x). Naturally, we
obtain another one by evaluating E(x) at another point x = x1, i.e., E1.

Thus, the position of energy minimum xmin is determined by

xmin = − b

2a
(6.3)

where a and b are

b = −f,

a =
1

x1

(
E1 − E0

x1
− b

)
, (6.4)

respectively.
Hence, at the cost of minimum computational task to locate the mini-

mum point in a searching direction, it applicability is limited by parabolic
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approximation. 1. For most cases, the parabolic approximation is not so
bad, but sometimes fails.
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Figure 6.1: An example of failure in the parabolic extrapolation. The solid
line indicates the true adiabatic potential, while the dashed line indicates
the parabolic approximation

First example of the failure is shown in Fig. 6.1 (a). As shown in the
figure, the extrapolated point xext by using evaluation at x0 and x = x1

is largely deviated from the true minimum point xmin. Even in this case,
if we take the next step from xext as the next starting point, we could
reach the true minimum point. But, because a feature of the conjugate-
gradient method is that searching directions previously done basically are
never repeated, the second search will be done in a direction perpendicular
to this direction. Hence, we could not reach the true minimum point.

Another example with which the program could not do anything, is
shown in Fig. 6.1 (b). When the initial position x0 and the trial position
x1 happen to appear like in this figure, evaluation of the curvature by Eq.
(6.1) leads a negative a, and accordingly the parabola is interpreted as upper
concave one. Then, there would be no minimum point. In this case, the
program proceeds by only restarting from x1 as the initial point.

Essentially, this case cannot be solved by parabolic approximation. We
should find somewhere in which parabolic approximation becomes good by

1There are many algorithms for the line minimization, which does not rely on the
parabolic approximation. But, these algorithms should evaluate the functional values at
many points. If too many time is spent for this evaluation, the merit of the conjugate-
gradient method would be totally spoiled.
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some ways, such as changing a trial positionx1

When you encounter this problem, what you can (should) do is check
the form of energy curve (adiabatic potential) in this direction. For this
purpose, program is slightly modified as follows. In a source file pw relax.f,
find subroutine Atom Optimize. At the beginning of this subroutine, you
will find a variable

LOGICAL :: step_flag=.FALSE. !step-by-step process

Change the variable step flag to be .TRUE.. Then, pwm stop entering
conjugate-gradient process, instead carries out evaluation of energy at equidis-
tance steps in a given direction. The calculation is done in subroutine
Atom Line Step. The unit step width and the total number of steps are
defined by unit dis and u it max in this routine. User can change these
parameters according to their needs.

The result is shown in an output file pwm *.sum

===== ION RELAXATION ================

...

STEP Etot delE resid rsf frgr dx/at

1 -63.21392591 0.0000E+00 0.7951E-07 0.2444E-01 -0.1955E+00 0.0000E+00

の後、

0 0.000000 -0.63213926E+02 -0.19549217E+00

1 0.080000 -0.63228246E+02 -0.16235414E+00

2 0.160000 -0.63239896E+02 -0.12886472E+00

3 0.240000 -0.63248852E+02 -0.94986127E-01

4 0.320000 -0.63255078E+02 -0.60610679E-01

5 0.400000 -0.63258530E+02 -0.25618189E-01

Each line lists the step number, displacementu, the total energy Etot, and
the force component in the searching directionfs are in order. Because the
derivative of u−Etot with respect to u gives fs, its relation should be checked.

It is wise, anyway, to be around 5 the step number of iteration of
conjugate-gradient, (maxIter0atom).

6.2 Optimization of cell parameters

Similar to atom optimization, pwm can optimize the cell parameters, because
stresses can be easily evaluated. Stress tensor σij has the same role as
Hellmann-Feynman forces do in atom optimization. Correspondingly, the
role of displacement is replaced with strain tensor εij .
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6.2.1 Preparation of calculation

As in atom optimization, first execute a SCF calculation for initial cell pa-
rameters, with obtaining output wavefunction. Then, rename wavefunction
file to inip *.wfn, end edit pwm.para

Job (0:SCF Calc. 1:Atom optimize 2:Cell optimize 3:Phonon 4:MDS)

2

atom movement (0: OFF, 1: ON valid only when cell optimization)

0

.....

Resume cell relaxation

0

max number of iterations for cell (maxIter0cell)

2

First, set Job Type to be 2 in order to activate the cell optimization
process. In this time, user has two choices whether atom positions are also
optimized or not, by setting the next input line.

The maximum allowed number of iterations for cell optimization is set
in maxIter0cell. By default, conjugate-gradient method is employed also
in this case.

pwm will stop the conjugate-gradient process if the iteration exceeds
maxIter0cell or if the residual stress becomes less than stress tol (de-
fault value 2 × 10−5 (a.u.)).

When one optimizing calculation does not achieve sufficient convergence,
user can continue the optimization by setting Resume cell relaxation to
be 1. In this case, the data of cell parameters and atom positions achieved
in the previous calculation is stored in file pwm *.var, and are read in at the
next calculation. Hence, it is not required to rewrite the crystal data file
*.prim.

6.2.2 Read output files

Here, we show a nontrivial example of cell optimization for α−boron. This
crystal belongs to the trigonal system with the space group D5

3d. In this
case, even under hydrostatic pressures, the strains are not isotropic. Hence,
a usual method of isotropic change in volume is not suitable to describe
strains under hydrostatic pressures. The present method provides correct
description in this case.

The lattice parameters are used from the experimental values as
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LATTICE PARAMETERS in a.u.

9.5563443 9.5563443 9.5563443

0.5290309 0.5290309 0.5290309

The corresponding stresses are obtained as

total stress (Ry/Bohr^3)

S(1,1)= -3.88638E-04 S(2,3)= 2.30327E-10

S(2,2)= -3.88636E-04 S(3,1)= -3.87469E-18

S(3,3)= -9.38125E-04 S(1,2)= -3.37167E-18

For quick view of result, it is better to see an output file pwm *.sum. In this
file, find a title

===== LATTICE MODIFICATION ===================

After this title, the conditions of cell optimization follow as

use Conjugate-Gradient Method

convergence criterion for stress 2.000E-05

Max iteration 3

Symmetry constraints on the cell 3

0: triclinic, 1: monoclinic, 2: orthorombic, 3: tetragonal, 4: cubic

under pressure = 0.00000 (GPa) = 0.000E+00 (Ry/Bohr^3)

Then, description of conjugate-gradient process with respect to the cell
parameters follows

IC Etot0 Etot del_E epmin res stress its sea comp

0 -68.47157622 -68.47157622 0.000E+00 0.000E+00 0.109E-02 0.641E+00

1 -68.47157622 -68.47982412 -0.825E-02 0.248E-01 0.328E-04 0.132E-01

2 -68.47982412 -68.47983356 -0.944E-05 0.781E-03 0.244E-05 -0.643E-03

3 -68.47983356 -68.47983356 0.000E+00 0.781E-03 0.244E-05 0.138E-02

iteration stop

because the change in E 0.00E+00

became less than that allowed by RSstress 2.00000E-05

<<<<<<<<< final results <<<<<<<<<<<<<<<<<<<<<<<<<<<<<

STEP Etot delE resid rsf rfm

100 -68.47983356 -0.8715E-08 0.7725E-10 0.5726E-04 0.2039E-03

Etot= -6.84798336E+01 (Ry/cell)

-9.31717578E+02 (eV/cell)

Here, for simplicity, we extract only relevant portions following a header IC.
IC indicates step number of the conjugate-gradient process with respect to
cell optimization. The initial value (Etot0) and the final value (Etot) of
the total energy at each step, change in the total energy (del E), the strain
of minimum point (epmin), the magnitude of residual stress (res stress),
and its component in the searching direction (sea comp) follow.
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As iteration proceeds, you can see that the total energy and the residual
stress become small.

As a consequence, the cell parameters become

The final lattice parameters

9.38527485 9.38527485 9.38527485

0.52019576 0.52019576 0.52019576

Finally, stress tensor is written out

total stress (Ry/Bohr^3)

S(1,1)= 1.33098E-06 S(2,3)= 1.39142E-10

S(2,2)= 1.33137E-06 S(3,1)= 2.91728E-18

S(3,3)= 1.69774E-06 S(1,2)= -1.92993E-18

As seen, the diagonal components become small compared with the initial
value by two order of magnitude.

6.2.3 Discussion about convergence

Convergence problems in cell optimization is basically the same as those in
atom optimization as described in Sec. ??. If something trouble happens,
the best thing is to see what happens with the adiabatic potential along the
searching direction.

In source file pw cellrelax.f, find subroutine Cell Optimize. Then,
in the header part, find a variable declaration

LOGICAL :: step_flag=.FALSE. !step-by-step process

This variable step flag should be changed to .TRUE., then the line step is
activated. Actual line step is carried out in subroutine Cell StepByStep.
There, you can change default values of step width of cell parameters (unit step)
and the number of step( nstep) according to your needs.

The result is shown in file pwm *.sum. Find the title

===== LATTICE MODIFICATION ===================

Then, look at the following portion

e= 0.00000000 Etot= -15.80512513 ssd1= 0.00153912

e= 0.00200000 Etot= -15.80511615 ssd1= -0.01048361

e= 0.00400000 Etot= -15.80508321 ssd1= -0.02244878

e= 0.00600000 Etot= -15.80502655 ssd1= -0.03430808

e= 0.00800000 Etot= -15.80494640 ssd1= -0.04610712

e= 0.01000000 Etot= -15.80484299 ssd1= -0.05779727
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For each strain (e), the total energy(Etot), the stress component in the
searching direction (ssd1) are listed. Plot e versus Etot, and e versus ssd1.
The latter gives the derivated of the former.

The accuracy of cell parameters is determined by that of strainεij , and
the latter is expressed by the residual stress σij as

σij = Cijklεkl (6.5)

where Cijkl are elastic constants. In evaluating Eq. (6.5), you can replace
the elastic constants with bulk modulus.

As an example, let estimate the accuracy of cell parameters of α−B. The
residual stress is ∆σ ≈ 10−6 [Ry/Bohr3]. Assume the bulk modulus B of
boron being similar to that of Si (B = 100 [GPa] = 6.8× 10−3 [Ry/Bohr3]).
Then, the accuracy of cell parameters becomes∆ε ≈ 1.5×10−4, that is 0.01%
is concluded.

How to cut plane waves 　When the lattice parameters are varied,
a special caution is required, unlike in atom optimization. Once the cell
shape is changed, a way of cutting planewaves becomes different. For a
fixed cutoff radius rc or energy Ecut, the number of planewaves Npw inside
the cutoff sphere may be different. In this case, unphysical discontinuity
may appear in the change in the energy.[35] On the other hand, if a set of
original planewaves is fixed, and thereby fixed Npw, the expansion surface of
planewaves in G space is no longer sphere, and thereby resulted in improper
cutting. This problem becomes especially troublesome for strong anisotropic
crystals.

This contradiction forces us to compromise at some points. In pwm, the
latter method is employed, in order to avoid unphysical discontinuity. But,
users should remind that calculation may be correct only for small strains.
Qualitatively, what to extent this approximation is valid of course depends
on the conditions of calculation and materials, but roughly speaking, strains
more than 10% is worth to suspect the correctness.

6.2.4 Pressure dependence

pwm can optimize cell parameters under hydrostatic pressures. In pwm.para,
an option is added as

pressure_GPa=

10.0
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The applied pressure is input in GPa. Positive value means compression,
while negative value expansion.

In pwm, the conjugate-gradient process is repeated until the internal stress
is balanced with the external pressure.

6.2.5 Related options

• steepest atom relax ON

• steepest cell relax ON

In atom and cell optimization, by default the conjugate-gradient method
is applied. But, the conjugate-gradient method is not always best one, as
described in Sec 6.1.4. In some times, the steepest-descent method is more
favorable. In this case, the above options let the process do so.

• pressure GPa=
1

Specify an externally applied pressure in GPa.

• trial step0atps=
0.001

In atom optimization, specify the trial displacement u1 in the line
minimization. The atomic unit is assumed.

• trial step0cell=
0.001

In cell optimization, specify the trial strain ε1 in the line minimization.



Chapter 7

Electronic band structure

After completion of SCF calculation, band and DOS calculations are pos-
sible. Prior to proceeding to these calculation, knowledge of Brillouin zone
and other related topics are prerequisite. For example, user should know
that the Brillouin zone of FCC is as shown in Fig. 7.1. Brillouin zones for
all Bravais lattices are tabulated in Ref. [24]. If you want to draw Brillouin
zone by yourself, Mathematica’s notebook MakeBZ.nb gives users a way to
do so.

g1g2

g3

L

Γ

KW
X

U

Figure 7.1: Brillouin zone of FCC

Band and DOS calculations are done in pwbcd. File dependence re-
lated this program is shown in Fig. 7.2. Program ayband and pdosdr are

84
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drawing programs into PostScript file, which are written by Professor A.
Yanase. First of all, data of charge density of SCF calculation pwm *.rho

is required. Although k point sampling data inip *.kpt is not necessary,
file inip *.inp is still needed, because this file keeps the type of potentials
along with other conditions. For both of band and DOS calculations, the
same input file bcd.para, but its description is different for different calcula-
tions. Maybe, you may be better prepare different input format band.para
and dos.para for respective calculations, and then rename one of then to
bcd.para depending on which calculation is chosen.

7.1 DOS structure

bnd_si.out

dos_si.out

or

fort.2

bcd.para

pwbcd

pwm_si.rho

inip_si.inp si.prim

ayband

pdosdr

Figure 7.2: flow of pwbcd

7.1.1 Preparation

For DOS calculation, input file bcd.para looks like

JobType

dos

Input file name
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si.prim

number of division (nkdiv)

8

number of levels you want to draw (NBUP) usually NEPC

12

scan zone only (iscan)

1

print control (ilp)

1

use symmetry (isymm)

1

energy unit (ienun=0 for Ry, 1 for eV)

0

In the following, meaning of the parameters is explained.

JobType Job type = dos
xtl.name crystal name
nkdiv division number of k line
NBUP number of bands drawn
iscan options for debug, 1: default
ilp print option, 1: default
isymm options for symmetrization, 1: on, 0: off
ienun energy unit, 0: Ry, 1: eV

The most important parameter is the number of division of the Brillouin
zone. This is done by specifying nkdiv. In each axis of the parallelepiped
of the first zone is divided by nkdiv. The number of bands drawn (NBUP)
should be less than NHDIM. Usually, about twice of the number of valence
bands is sufficient. But, for simple metals such as alkali metal, the number
of valence bands is too small (only one or two), so that further inclusion of
conduction bands is desirable.

Other parameters are only for debug purpose, and hence usually the
above setting is enough.

pwbcd prints out the result in file dos *.tbl and fort.2. In order
to display these data, a Mathematica notebook DOSshow.nb is ready for
doing conventionally. In this case, raw data in file dos *.tbl. For further
processing, data file fort.2 containing symmetry-decomposed spectra can
be displayed by pdosdr. This utility is created by Prof. Yanase.

In DOS calculation, the k sampling is taken so that the parallelopiped
spanned by three primitive vectors, G1, G2, and G3, are uniformly seg-
mented by nkdiv. For example, in case nkdiv=4, four k points are taken in
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the G1 direction, as

0,
1

4
,

2

4
,

3

4

in G1 units. Unlike k sampling method by Monkhorst-Pack, it is noted
that the sampling point starts from the zone center. Among them, those
point which are outside the first zone are automatically held back into the
first zone. Points which can be transformed by symmetry operations are
eliminated from a set of sampling points. This means that the parallolopiped
is reduced to the irreducible wedge. Accordingly, weight factor is associated
with these k points.

pwbcd diagonalizes Hamiltonian at each k point, and sort the eigenvalues
in ascending order. When an option is set as isymm=1, the set of planewaves
are symmetrized before diagonalization.

At the last of calculation, all the valence electrons are assigned each
bands from the lowest bands, in order to obtain Fermi level EF.

SGI
On SGI machines, when compiling pwbcd, it is recommended
that no higher optimized level than -O is applied. This is due to
subtle compatibility of TSPACE. Whenever TSPACE is linked,
it is more safe to use a compiler option -static.

7.1.2 Results of DOS calculation

Results of DOS calculation are written out in file dos *.tbl and fort.2.
Prior to seeing these results, the calculation conditions should be checked in
a file dos *.out.

After the title

==================== The calculation parameters ===================

the calculation conditions are listed. Then, a subtitle appears as

================ K space segmentation =======================

which follows information about k point sampling. In the above example, k
points are initially created by eight. Then, symmetry reduces the number
of k points to the next three,

Number of sampling points (NKPTS) 3

No NM c p DK Nstr WTK in/out

1 GM 0 0 0/ 2 0 0 0/ 4 0.0000 1 0.12500 1

2 L -1 1 1/ 2 2 0 0/ 4 0.1688 4 0.50000 2

3 X 0 0 2/ 2 2 2 0/ 4 0.1949 3 0.37500 2

sum check over wtk = 1.000000
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In this list, the name of k point, the coordinates in the conventional, and
in the primitive base appear, which are followed by the magnitude (DK), the
number of the star, (Nstr), the k point wight (WTK), the index as to whether
inside of the zone or outside (refer TSPACE).

After that, it describes processes of symmetrization of planewaves and
diagonalization of Hamiltonian for each k point. Codes of Osaka2k such as
pwm are basically described on the primitive base, while TSPACE is described
on the conventional base. For this reason, pwbcd heavily does conversion
coordinates between these expressions, and checks are made many times.
These checks are recorded in file dos *.out. Usual users do not need this
description.

dos *.out concludes with estimating Fermi level EF.

=================== determin Ef =================================

Determine the Fermi level

energy --- (eV)

Fermi energy = 6.2896

at 1 th-kpoint 0 0 0/ 4

Total piled up number = 8.000000

Number of electrons = 8

Sorting of HOMO

Valence Top: 6.2896 at 1 2 2 0/ 4

Sorting of LUMO

Conduction Bottom: 7.1785 at 3 0 0 0/ 4

Gap= 0.8889 from 0 0 0/ 4 to 2 2 0/ 4

final distribution of the valence bands

kn IP2 - IP3 E2 - E3 Occ2 - Occ3

1 3 3 - 4 3.17028 - 3.17028 2.00000 - 2.00000

2 2 3 - 4 4.91918 - 4.91918 2.00000 - 2.00000

3 1 2 - 4 6.28963 - 6.28963 2.00000 - 2.00000

Ef= 6.28963 nv= 3 kf= 1 del_n= 0.00000

Nel= 8.0000

Ef= 6.2896

Within the resolution of a given mesh, the energy gap is also estimated. The
above example says that the energy gap is 0.8889 eV, which is difference
between the valence top at (000) and the conduction bottom at (220)/4.

After subtitle final distribution of the valence bands, occupa-
tions of the valence top bands are displayed over the zone. For Si, because
it has four valence bands, the forth band is the topmost occupied band,
unless there is no degeneracy. When degeneracy takes place, all the degen-
erate bands are considered as the valence top level. The band index of these
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degenerated top bands are kept by indeces from IP2 to IP3. E2 and E3

are respective energies. In the present case, the degeneracy is rigorous for
symmetry reason. But, even without symmetry reason, those levels which
fall within the energy resolution ERESO are regarded as being degenerate. In
this case, those bands from IP2 to IP3 are equally occupied. pwbcd checks
if the occupation obtained in this way is consistent with the total number
of electron Nel.

7.1.3 Display

For displaying DOS structure, there are two choices.

(i) Line spectrum

The most primitive method to display DOS spectra is simply plot the
raw data in dos *.tbl. The format of this file is

1 -5.885658 0.125000

1 6.289627 0.125000

...

2 -3.384971 0.500000

...

The first column lists index of k point, the second does the KS levels, and the
third does the weight of the k point. Mathematica’s notebook DOSshow.nb

reads this file, put these data in Gaussian distribution function, and plot
that. An example obtained in this way is shown in Fig. 7.3 (a).

When using corse mesh points, you see spurious peaks. If you want to
look for van Hove singularity, this is really trouble unless a huge number of
k mesh point is taken.1

(ii) tetrahedron method

The tetrahedron method is a sophisticated algorithm of interpolation for
smoozing discritized DOS curve. [36]

pdosdr do that by reading an output fort.2 of pwbcd, when JobType

= dos. The format of fort.2 will be explained in Sec. 7.2.2. Because
pdosdr is originally created for other use, the way of description for lattice
is different from Osaka2k; pwbcd uses the primitive base, while pdosdr uses

1This point is leaned by Prof. Yanase.
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Figure 7.3: DOS of Si. (a) line spectra broaden by Gaussian, (b) spectra
drawn by the tetrahedron method

the conventional base. For a case such as FCC, user are required to bridge
these two expression in k sampling. 2

For Si case, for example, the Brillouin zone is divided by 2 × 2 × 2 in
pwbcd. Because {G1, G2, G3} is not orthogonal system, the above mesh
yields (111)/2 as well as (000) and (001) in the conventional base (2π/a
unit ). On the other hand, pdosdr divides uniformly the space {a∗, b∗, c∗},
because of use of conventional base. If we set the division number two, extra
points such as (100)/2, (110)/2, in addition to the above k points. As to
these extra points, because pwbcd does not sample, this setting causes error
in pdosdr.

Hence, in pdosdr, the division number should be 1. Then, pdosdr takes

2The authors did not check completely for all crystal systems, although he believes
correctness of the present treatment.
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four k points, i.e., (000)/1, (100)/1, (110)/1, (111)/1. Because (111)/1 is
equivalent to (000)/1, and (110)/1 is to (100)/1, among three k points in
pwbcd, only two are used in pdosdr. The other is discarded. This waste of
computation cannot be helped.

Now, we explain how to use pdosdr. Prepare an input file pdos.para,
as

NONMSPIN-ORBIT

1 1 1

0

-10.0 20.0 0.2

8

The first line is related to magnetic states, and in the present case,
simply follow the above example. The next three numbers indicate the
division numbers in the k space, NX, NY, and NZ. Care must be paid in order
to keep consistency the division numbers in pwbcd, as described above. The
next line is set to be zero, which is used for decomposition of DOS into
atomic orbitals. The following three numbers are the lower limit of energy
axis (ESTART), the upper limit (ENEND, the width of energy step (DE). The
mesh points of the energy axis are therefore ENEND-ESTART)/DE+1 The last
number is the number of electrons in the primitive unit cell

An output file fort.12 lists as

SPIN 1

1 -10.0000 0.000 0.0000

2 -9.8000 0.000 0.0000

150 19.8000 1.689 27.1343

151 20.0000 1.438 27.4481

electron number= 8 EF= 6.80000000000000

The spectrum data are listed between the first and last comment lines. Each
line lists the index of energy mesh, energy, DOS, and its convolution up to
this point.

This data can be displayed by Mathematica’s notebook PDOSshow.nb.
By removing the first and last lines of fort.12, it is read by PDOSshow.nb.
In Fig. 7.3 (b), an example is shown. Even when mesh points are small,
DOS curve looks smooth. But, if you want to obtain van Hove singularities,
it is invariably true that you have to take a large number of mesh points.
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7.1.4 Fermi surface

For metals, Fermi surfaces can be drawn by using output of pwbcd. As
shown in Fig. 7.1, pwbcd outputs file dos *.sum, in which bands are written
from k to k, disregarding information of irreducible representations as in
fort.2. This data are transformed to Mathematica’s notebook MakeFE.nb,
where Fermi surface is constructed. The Fermi level is given in dos *.out.
Actually, this notebook regards the Fermi level simply as an energy level,
so that any value is acceptable. This means that this notebook can be also
used to draw equi-energy surface.

(b)(a)

Figure 7.4: Fermi surface of Al: a) 2nd band, (b) 3rd band

In Fig. 7.4, an example of Fermi surface for Al is displayed. Here, the
form of extended zone is used. To draw such figures, a computation time be-
comes sometimes a hour. Be patient! You may further want to superimpose
the boundary lines of Brillouin zone such as in Fig. 7.1 to Fermi surface.
MakeFE.nb does not do so. TSPACE provides utilities for this purpose,
which are more flexible. But, in this case, you should understand underly-
ing principles for contour mapping, along with many other techniques.
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7.2 Band structure

The band calculation in pwbcd calculates bands at k points along arbitrary
lines, although the lines are usually chosen to be symmetry lines. These
lines should be singly connected. As in DOS case, two ways for display
the result are ready. One is simply plot each bands without information of
symmetry, by reading file band *.tbl. The other is sophisticated method of
using ayband, which interpolates and extrapolates points by using symmetry
properties fully. Outputs of ayband is PostScript file. Then, the file can be
handled by many drawing programs, such as Illustrator. ayband is created
by Prof. A. Yanase.

7.2.1 Preparation

For band calculation, input file bcd.para looks like

JobType

bnd

Input file name

si.prim

number of k points specifying symmetry lines (NKPTS)

7

KB(3), ICB (in prim)

0 0 0 1 G

3 3 6 8 K

1 1 2 2 X

1 2 3 4 W

1 1 1 2 L

0 0 0 1 G

0 1 1 2 X

number of division per line (NDIV)

5

number of levels you want to draw (NBUP) usually NEPC

12

scan zone only (iscan)

1

print control (ilp)

1

use symmetry (isymm)

1

In the following, meaning of each parameter is described.
The most important input is specification of lines, on which band disper-

sions are drawn. pwbcd assumes that the drawing lines are singly connected.
Hence, the drawing lines are expressed by sequence of node points k as

A → B → C · · ·

The number of nodes is given by NKPTS in bcd.para. Then, each node point
k, KB(3)/ICB, is given in primitive base.
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JobType Job type = bnd
xtl.name crystal name
NKPTS number of lines drawn
KB(3), ICB terminal k points of each line
NDIV division number for each line
NBUP number of bands drawn
iscan options for debug 1: default
ilp print option 1: default
isymm option for symmetrization 1: on, 0: off

In the above example, five symmetry lines, L−Γ, Γ−X, X−W , W −K,
K − Γ, are taken. 3 The segment number of each line is given by NDIV.

The number of bands which you want to draw is specified by NBUP. pwbcd
calculates bands from the lowest up to NBUP at each k point. As in DOS, it
may be as large as the number of electrons in the primitive unit cell. But, if
too small, it should be more than that. When setting use symmetry = 1,
this caution is particularly important. In this case, pwbcd enumerates bands
at each symmetry block by NBUP. If NBUP is too small, it may happen for some
band on a symmetry line to miss to connect to that on another symmetry
line. In this case, NBUP should be increased. The remaining parameters are
for debug purpose, so usually there are left as it.

7.2.2 Result of band calculation

pwbcd calcultes bands along given lines, and yields output file bnd *.tbl and
fort.2. Before seeing result, users should check if the calculation conditions
are really what you intend. This can be seen in file bnd *.out, as in DOS.

For quick view band diagram, data bnd *.tbl is transformed to a 2-
dimensional plotting program. The format of bnd *.tbl looks like

1 -0.248790244660327

1 -6.646822029304370E-002

...

2 -0.289100855937076

...

In each line, first the index of k point comes, then an energy level comes.
Therefore, plotting it is easy. An example obtained in this way is shown in

3Prof. A. Yanase points out a wise selection Γ → K → X(1, 1, 0) → W → L → Γ →

X(1, 0, 0)
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Fig. 7.5. The abscissa represents k lines in order L − Γ − X − W − K − Γ,
and each line is segmented by 5. Due to lack of symmetry information,
connectivity between adjacent levels has to been decided manually. In this
example, this determination is not difficult, but for more general case, am-
biguity always is associated with. At the zone boundary, sometimes the
asymptotic behavior of dispersion of degenerate bands is important. In this
case, symmetry properties help us greatly to remove such ambiguities. But,
full use of symmetry properties are highly skillful work, so that user should
lean deeply group-theoretical methods.

3020100
-0.5

0.0

0.5

1.0

1.5

k

EE

Figure 7.5: Primitive plotting of bands of Si. The output of pwbcd is simply
plotted without use fo symmetry properties.

ayband does this in place of you. ayband connects relevant points
smoothly by spline curves. To which point should be connected to which is
judged by using irreducible representations. Also, for curvature at the zone
boundary, ayband checks if k dependence is linear in k or quadric, by using
cumbersome processes which are seemingly redundant calculations.
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Two bands which belong to the same irreducible presentation do not cross, i.e., no

closing rule. Accordingly, there is no accidental degeneracy. ayband is strict with

this principle. I have no compliant with this treatment in implementation, because

actual code should have always definite criteria, otherwise we could not write code.

However, I am not sure if this is in principle correct. For example, C. Herring

discussed various properties of accidental degeneracy if the accidental degeneracy

presents.[37] I am not sure if accidental degeneracy without any symmetry reason

can happen.

Output file fort.2 is a complete data set in terms of symmetry proper-
ties. This file is expected to put in ayband.

The data format of fort.2 is as follows.
Data are gathered according to k points, while in each k point data are

gathered according to the irreducible representation of the small group of k.
The minimum data block looks like

1 5 5 5 10 1 L 2 1 1 5

2.793676 5.247479 6.851224 7.409376 8.271489

The first number is a serial number, which follows the next four represent
k in presentation KB(3)/IC. In this examle, (5, 5, 5)/10, that is, L point.
User should note that k is presented in the conventional base. Next comes
a spin-related parameter (IUD), which follows the name of k point.

The remaining four are the index of the irreducible representation (MRN),
the dimensionality of the representation (MWET), the number of star k (NST),
and the number of eigenstates belonging this block (NEIG).

After carried return, NEIG eigenvalues are enumerated in ascending order
in energy.

ayband uses information involved in fort2.
In order to execute ayband, further input data are required. fort.3 is

another input file. There contains parameters to control drawing process.
The format looks like

NONMSPIN-ORBIT

0 0 50 NLCOMP NSPIN IFILE

0 1 12 JPR JMARK IPOINT(character)

-1.0 1.2 100.0 150.0

5

4 4 4 8 0 0 0 8 LD

0 0 0 8 8 0 0 8 DT

8 0 0 8 8 4 0 8 W

8 4 0 8 6 6 0 8 K
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6 6 0 8 0 0 0 8 SM

0.5 Fermi level

Si PseudoPotential

The meaning of these parameters are described in the following.

MAGNET Magnetic state. pwm uses option NONMSPIN-ORBIT only.

NLCOMP, NSPIN,IFILE the number of DOS components with respect
to angular-momentum, spin state. Set both to be 0. IFILE is the file
index of the output file.

IPR, JMARK,IPOINT The first two are parameters controlling output.
By default, set as in the above. IPOINT is the size of characters for
the representation in the band diagram. item [E0, EM, YM, XM]
Minimum and maximum of energy of plotting, and the scale of x−
and y− axis in mm.

NAXM the number of lines in band diagram. Individual lines are described
in the following.

line description Specify symmetry lines by giving two terminal points k1

and k2. k is given three numerators and the common denominator.
This description appears for NAXM lines. The name of terminal points
are added for users convenience only, and are not read in ayband.

EF Fermi level

TITLE The title of figure

In this way ayband requires again line specifications, independent of those
of pwbcd.

In Fig. 7.6, a band diagram obtained in this way is displayed.
You can see that dispersion curves are smoothly drawn, and connectivity

at the zone boundary is made clear.

In the figure, the numbers indicate the label of irreducible representa-
tion. This numbering is in accordance with TSPACE, the way of which is its
own one. Users who have well read reference may want to use more ortho-
dox labeling. In this case, user are expected to examine correspondence of
labeling between TSPACE and the reference you want.
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Figure 7.6: band diagram of Si drawn by ayband. The line lengths of dif-
ferent k points are given by the correct length in k space

As to time-reversal symmetry, a note should be added. When time-

reversal symmetry yields extra degeneracy between different irreducible

representations, ayband displays only one of them. For example, a

zincblend crystal (S.G. T 2
d ) such as GaAs has extra degeneracy be-

tween ∆3 and ∆4 on ∆ line, due to time-reversal symmetry. ayband

attributes only 3 as the label. Therefore, when you enumerate bands

and degeneracy, you should count by taking another invisible one into

account.

A troublesome point of character table in the literature is that there are
actually two ways of presentations; normal irreducible representation (vector
presentation) and ray presentation (projective or multiplier representation).
4 TSPACE uses ray presentation. In my impression, vector representation is
more frequently used in the literature of band calculations. Maybe, Koster

4An example of the vector representation is Koster[38]. This representation is easy to
understand, but actual character table is apt to be big. Enumeration of this representation
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table [38] is one of the most frequently cited one. Therefore, the corre-
spondence of representations between TSPACE and literature such as Koster,
BSW, etc.

TSPACE can print out complete list of irreducible tables by calling TSIRDS.
TSPACE uses ray representation D(α). It is an irreducible representation Γ(α)
of the small group k multiplied by a phase factor

D(α) = exp(ik · τα)Γ(α), (7.1)

where τα is a nonprimitive translation associated with rotation α This rep-
resentation D(α) looks neat because superfitious factor associated with non-
primitive translation is removed, and thereby has definite correspondence to
the point group except zone boundary.

Let us see an example of nonsymmorphic space group, say, Si. On ∆
line, subroutine TSIRDS prints out character tables, as

IMR NO 1 DIMENSION= 1

1 2192227284042

1 1 + + + + + + + +

IMR NO 2 DIMENSION= 1

1 2192227284042

1 1 + + + + - - - -

IMR NO 3 DIMENSION= 1

1 2192227284042

1 1 + + - - + + - -

IMR NO 4 DIMENSION= 1

1 2192227284042

1 1 + + - - - - + +

IMR NO 5 DIMENSION= 2

1 2192227284042

1 1 + - I J 0 0 0 0

2 2 + - J I 0 0 0 0

in file fort.15. In this table, all the matrix element for all the symmetry
elements are listed (In the present, only diagonal elements are extracted for
clarity). Meaning of the index of symmetry elements and index of repre-
sentation should be referred to in TSPACE [24]. The character of this ray
presentation is compiled to show in the left of Table 7.1.

By seeing this, you can find definite correspondence of character table
between the present D(α) and that of point group C4v. On the other hand,
in the vector representation Γ(α), complex number η appear. In the limit

for all 230 space groups is tremendous task. On the contrary, ray representation achieves
greatly economy of table. Hence, Kovalev[39], Bradley Cracknell [40] thoroughly describes
character tables which cover all the space group. Ray representation is, on the other hand,
higher skill to understand.
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Table 7.1: Character table on the ∆ line. The left shows multiplier represen-
tations D, while the right shows vector representations Γ. The second row
lists non-primitive translation τ = (1/4, 1/4, 1/4) associated with rotation.
The first column of the left part indicates the label in TSPACE.

D E C2 2C4 2σv 2σd Γ E C2 2C4 2σv 2σd

τ τ τ τ
1 ∆1 1 1 1 1 1 ∆1 1 1 η η 1
2 ∆′

1 1 1 1 -1 -1 ∆′
1 1 1 η −η -1

3 ∆2 1 1 -1 1 -1 ∆2 1 1 −η η -1
4 ∆′

2 1 1 -1 -1 1 ∆′
2 1 1 −η −η 1

5 ∆5 2 -2 0 0 0 ∆5 2 -2 0 0 0
η = exp[−ik · τ ]

k → 0, this factor becomes 1, so that you can still find correspondence to
the presentation of the point group C4v.

But, at the zone boundary, it is not easy. When the dimension of a
representation is one, the representation becomes equivalent to that of point
group, but complex numbers appear in the character. When the dimension is
more than one, correspondence to that of point group disappears. Probably,
irreducible representations of X point is the most complicated one. The ray
presentation looks like,

IMR NO 1 DIMENSION= 2

1 2 3 4161819222526272840424346

1 1 + + + + 0 0 0 0 0 0 0 0 - - - -

2 2 + + - - 0 0 0 0 0 0 0 0 - - + +

IMR NO 2 DIMENSION= 2

1 2 3 4161819222526272840424346

1 1 + + + + 0 0 0 0 0 0 0 0 + + + +

2 2 + + - - 0 0 0 0 0 0 0 0 + + - -

IMR NO 3 DIMENSION= 2

1 2 3 4161819222526272840424346

1 1 + - + - J I J I 0 0 0 0 0 0 0 0

2 2 + - - + J I I J 0 0 0 0 0 0 0 0

IMR NO 4 DIMENSION= 2

1 2 3 4161819222526272840424346

1 1 + - + - I J I J 0 0 0 0 0 0 0 0

2 2 + - - + I J J I 0 0 0 0 0 0 0 0

As before, it is arranged as the character table in the left of Table 7.2.
As Koster table [38] lists only vector representations (the right of Table

7.2), the characters converted to the vector representation Γ(α) by Eq. (7.1)
are written in output file fort.18 of pwbcd. There, character tables are
listed at each k point.

11 1 th point = 40 0 0/ 40 X 2 1.0000 0.0000 0.0000
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Table 7.2: Character table of X point. The left shows multiplier represen-
tations D, while the right shows vector representations Γ. For simplicity,
symmetry elements whose character vanishes are omitted from this table.
The first column of the left part indicates the label in TSPACE.

D E C2x 2C ′
2 2σd Γ E C2x 2C ′

2 2σd

τ τ
2 X1 2 2 0 2 X1 2 2 0 2
1 X2 2 2 0 -2 X2 2 2 0 -2
4 X3 2 -2 2i 0 X3 2 -2 2 0
3 X4 2 -2 -2i 0 X4 2 -2 -2 0

Characters

#IR= 1 ND= 2 MG= 16

JG= 1 2 3 4 16 18 19 22 25 26 27 28

Re= 2.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Im= 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

JG= 40 42 43 46

Re= -2.00 -2.00 0.00 0.00

Im= 0.00 0.00 0.00 0.00

Characters are listed with decomposing to its real and imaginary parts for
each symmetry element, where JG is its index. Now you can directly compare
the present and the literature labeling. Although this task is the one, which
requires you patience and painful effort, it will provide precious experience.

7.3 Display of wavefunctions

In some times, you may want to draw wavefunctions in the real space. Os-
aka2k provides two ways to do so. These are described in Ref. [42].
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Graphics display of a crystal
by Mathematica

A.1 coordinates systems

Most of graphics data of Osaka2k can be handled by Mathematica’s note-
books. Among these nobebooks, only ChgDnst.nb is described in this ap-
pendix. Because projecting of charge density distribution on a cross section
is frequently used, user should be familiar to handle the coordinate system
in a general way. Nowadays, there are many commercial programs are avail-
able to display such a distribution. Nevertheless, you cannot use it with
foolproof. I mean that without knowledge of coordinate system and of how
surfaces are expressed, you cannot obtain correct answer. Efforts for un-
derstanding how express nonorthogonal system and how specify a cut plane
in a particular program, even it is a well documented commercial program,
amounts to almost the same effort to create the same program. You must
know what you are doing with a specific coordinate.

Here, as nontrivial example, we take α oxigen crystal, which belongs to
monoclinic crystal. The space group is C2/m, and base-center (C-center),
and the crystal structure is shown in A.1 (a).

Basically, Mathematica’s 3-dimensional plotting routines assume to use
equi-spacing orthogonal mesh. Owing this, tedious conversion of coordinates
are required for non-orthogonal systems. Although user are not required to
know details of coordinate transformation, he must know how specify a cut
plane he wants to draw.

In ChgDnst.nb, by section 2. (Construct crystal structure), a given
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Figure A.1: Cutting a cross section out of the crystal. (a) α− oxigen crysal.
The primitive unit cell (red) and the conventional unit cell (blue) are indi-
cated. Graphics frame covers both of unit cells. (b) a cut plane (green) is
specified by three points, {pl0, pl1, pl2}. (c) 2-dimensional charge density
is plotted on the rectangular spanned by {pl0, pl1, plt}

crystal is described in the folloing, First, in section read *.prim, data of
the crystal structure is read by opening data file

file = OpenRead["name.prim"]

Hence, you should input the name of a crystal file.
The length unit is given by the maximum of {a0, b0, c0} (amax in Å)

• The primitive unit cell is given by three primitive translational vectors
{t1, t2, t3} ({ t1, t2, t3} in the notebook)

• The conventional unit cell is given by three translational vectors {tc1, tc2, tc3}
({ tc1, tc2, tc3})
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• Define a global region so that it includes all these unit cells. The
global region is spanned by three vectors {gp1, gp2, gp3} ({ gp1, gp2,

gp3}), and these are necessarily an orthogonal set.

Given these basic data, ChgDnst.nb draws the primitive and conven-
tional unit cells, and cut the global region, as shown in Fig. A.1 (a). The
global region is a parallelepiped, whose vertices are termed as gp0, . . . , gp7
(in the figure (b)). In what follows, all coordinates are expressed on this
global coordinates.

In this coordinate system, atom positions are expressed as follows.

• The basis are composed of Natom (natom) atoms. The positions are
given by ba[i].

• Lattices are specified by a set of three integers. This is done in the
notebook by calling function lattice

lattice[l_,m_,n_] := N[l t1+m t2+n t3]

In convenience, several of these are identified by a serial number, as

lattice[0]=lattice[0,0,0];

lattice[1]=lattice[1,0,0];

lattice[2]=lattice[0,1,0];

lattice[3]=lattice[0,0,1];

lattice[4]=lattice[1,1,0];

lattice[5]=lattice[0,1,1];

lattice[6]=lattice[1,0,1];

lattice[7]=lattice[1,1,1];

lattice[8]=lattice[-1,1,1];

lattice[9]=lattice[1,-1,1];

lattice[10]=lattice[1,1,-1];

lattice[11]=lattice[1,-1,0];

lattice[12]=lattice[1,0,-1];

lattice[13]=lattice[0,1,-1];

lattice[14]=lattice[2,0,0];

lattice[15]=lattice[0,2,0];

lattice[16]=lattice[0,0,2];

and

lattice[-#]=-lattice[#];

• Atom positions are given by calling function atomPos

atomPos[l_Integer,j_Integer]:=lattice[l]+ba[j]
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This is a list of major variables in the notebook.
Another complication can occur for the present case of oxigen crystal.

When the graphics region is clipped by the global region, gp0, . . . , gp7,
a molecule O2 is halfway cut. Accordingly, the molecular unit is hardly
seen. Therefore, user should expand the global region further. This is done
manually, by following the algorithm of the notebook.

After that, in section read data file, input the file name of charge
density, as

file = OpenRead["pwm_name.rho"]

Then, charge density data are read in. After the title, density statistics

{ro3min, atmin}

{0.234258, {1, 1, 35}}

{ro3max, atmax}

{247.381, {12, 58, 56}}

ChgDnst.nb calculates the maximum and minimum of charge density.
3-dimensional contour map of charge density is plotted by scanning data

points inside the global parallelepiped region. User achieves it only by throw-
ing desired parameters in plot command

Timing[ grf = ContourPlot3D[ fulst[l,m,n],

{l,igxmin,igxmax},{m,igymin,igymax},{n,igzmin,igzmax},

Contours->{80}, PlotPoints->{8,4} ] ]

Here, Contours is the value of contour at which contour map is created.
Hence, this value must be fallen into a range between the mimimum and
maximam of charge density, estimated before. Fig. 5.4 is an example ob-
tained in this way in a global region, gp0, ... , gp7.

A 2-dimensional cut plane is specified by two vectors. These are spec-
ified by three points, pl0, pl1, pl2. It is recommended that these three
points are expressed by using gp0, ... , gp7 instead of using absolute
coordinates. If you want to take pl0 a quarter of gp0-gp3, define it as

−→
pl0 =

3
−→
gp0 +

−→
gp3

4
(A.1)

The right-hand side contains gp0, ... , gp7 only.
Because the region spanned by the vectors is, in general, not rectangular,

a new vector plt is taken as normal to a line pl0-pl1 as shown in the figure
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A P

Figure A.2: Coordinate transformation in displaying charge density plot.
The primitive unit cell is indicated by red lines, while black frames indicate
the global region. Charge density is given at each lattice point. Point A
given in the cartesian coordinates is draw back to an equivalent point P in
the primitive unit cell.

(c). The black area if the final region on which contour map is drawn. In
ChgDnst.nb, intersections of the unit cell and atom positions, if any, are
drawn as well. An example is shown in Fig. 5.5.

A.2 Charge density contour map

The charge density data in the real space, rod r, are given on the primitive
unit cell only, because it is a minimum set. The primitive unit cell is divided
by {na1, na2, na3} , and the charge density is given only those lattice

points. The normalized factor is taken to satisfy

Nel =
NA3∑

i=1

ρi ×
1

NA3
, (A.2)

where Nel is the number of electrons in the primitive unit cell

After charge density data are read in the notebook, the charge density
is transacted. There are two points to be considered.
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First, it is almost always better to expand charge density data on the
cartesian lattice points in order to proceed with graphics processes. On
the other hand, the original primitive cell on which the lattice points are
expanded is in general not an orthogonal system. Even cubic crystals, FCC
and BCC are not orthogonal systems.

Another point is that, because the original data are given only inside the
primitive unit cell, in order to obtain the charge density at a general point
in the whole space, the general point is hold back into the primitive unit
cell.

By these requirements, conversion of the coordinates between the carte-
sian and the original primitive unit cell space is needed. These relation is
shown in Fig. A.2.

This conversion is carried out by function

fd[l_,m_,n_]

in notebook. This function is calculate the charge density at a general point
on the whole space. A point A on which you want to know the charge density
is given by the cartesian coordinate l, m, n. This point is draw back to
point P in the primitive unit cell as shown in Fig. A.2. The primitive
unit cell is originally divided by {na1, na2, na3} . Because the point P

is generally not a lattice point in the primitive unit cell, the charge density
of P is interpolated by those of the nearest neighbor lattice points. The
interpolated value is return by function fd.

All the contour maps of charge density are drawn through calling fd.
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