ABCAP beginners 実習

2007 年 9 月 10 日 (浜田典昭)

1 環境設定

シェルとして tcsh を用いる。~/.tcshrc ファイルの中に次の行を加える。

######## .tcshrc #########

setenv ABCAP /home/CMD/teac02/abcap0503

setenv FC_TYPE gen
setenv FC ifort
setenv FO "-static -save -Vaxlib"

set path=(. \$path)

####### .tcshrc #########

2 計算の準備

ホームディレクトリの下に ディレクトリ abc を作り、その下にシェルスクリプトファイル Setnew0.sh をコピーしておく。(abc は好きな名前に変えてよい。)

tcsh

cd ~

mkdir abc

cp \$ABCAP/sampleO/SetnewO.sh .

Setnew0.sh は新しい物質の計算をするときに、実行コマンドと入力データの例を \$ABCAP/sample0/LaMnO3c_f_0/ からコピーして来るものである。

3 Siの計算例

計算ディレクトリの準備:

cd ~/abc

mkdir Si

cd Si

../Setnew0.sh .

コマンド H により計算手順が示される。基本的には、???.data を編集し、???.sh を実行することにより計算が進む。

[1] 結晶データと計算条件の入力:

ファイル ab_prp.data を編集することにより行われる。

>>>>>> ab_prp.data >>>>>>> Si

a=5.4296 A

face-centered (il=2)

generators 5 (0/1, 0/1, 0/1)

19 (1/4, 1/4, 1/4)

25 (1/4, 1/4, 1/4)

atomic position (0.0, 0.0, 0.0)

nonmagnetic (jmag=0)

>>>>>> ab_prp.data >>>>>>>

(ab_prp.data) run ab_prp.sh

(ここで、run はこのマシン特有のコマンドで、空いているノードで ab_prp.sh を実行してくれる。)

ab_prp.sh を実行すると、ab_input.data が作られる。バンド計算プログラムは ab_input.data を入力として走る。(ab_input.data はやや長いので、ab_prp.sh がそれを作る。)

ab_input.data は、ab_prp.data を加工した結晶データと計算条件に、原子の情報を加えたものである。原子の情報は データベースファイル atom.data から得ている。

[2] バンド計算では出発となる電子密度分布が必要なので、これを原子の電子密度分布の重ね合わせとして計算する。

(ab_input.data) run ab_in.sh

ab_in.shでは、5個のプログラムが走り、

- 結晶構造のチェック、全対称基底関数の作成 (ab_in.exe)
- 結晶の電子密度分布の初期データの作成 (ab_inch.exe)
- 計算 k 点の作成 (ab_kpgn.exe)
- 計算規模の見積り (ab_size.exe)
- 全対称基底関数の重なり積分の計算 (ab_ospw.exe)

が、行われる。

[3] 自己無撞着バンド計算の繰り返し計算を行う。 シェルスクリプトファイル flo5.sh を編集して、 パラメータ ITER_MAIN に繰り返し計算の回数を 指定する。

(ab_input.data) run f105.sh

f105.sh では多数のプログラムが順次走り、

- ポテンシャルの作成 (fl_pot.exe)、
- 固有状態の計算 (fl_bnd.exe)、
- 電子密度分布の計算 (fl_chg.exe)、
- 密度行列の計算(fl_dmmx.exe)、
- 全エネルギーの計算 (fl_pot.exe)、
- 電子密度分布の次の入力データの作成 (fl_mx5.exe)

を行う。なお、f1_ptuj.exe は (入力パラメータ lda+u>0 の時のみ) LDA+U 法における+U ポテンシャルの計算を行う。

繰り返し計算(iteration)の各段階での情報がファイル iter.log に書かれている。コマンド

check.sh

で収束状況が画面に出る。

[4] 結晶構造の描画

ファイル bn_atps.data に描画の範囲を A 座標系で与え、結晶構造を描く。bn_atps.sh とp3_atps.sh を走らせる。

[5] バンド構造 (e-k curve) の描画

k 空間内の線分を与え、それに沿ってバンド構造 を描く。道筋の例がファイル a_bnpl.data に与 えられている。bnpl.sh を走らせる。

[6] 状態密度の描画

全状態密度、マフィンティン球の中の s,p,d,f 部分状態密度を描くことができる。 $bn_pdos.sh$ と $p2_dos.sh$ を走らせる。

4 強磁性 Fe の計算

>>>>>> ab_prp.data >>>>>>>

Fe

a=2.87 A

generators

body-centered (il=3)

5 (0, 0, 0) 19 (0, 0, 0)

25 (0, 0, 0)

atomic position (0.0, 0.0, 0.0)

magnetic (jmag=2)

>>>>>> ab_prp.data >>>>>>>

5 反強磁性 Cr の計算

>>>>>> ab_prp.data >>>>>>>> Cr

a=2.88 A

simple (il=1)

generators 5 (0, 0, 0)

19 (0, 0, 0)

25 (0, 0, 0)

atomic positions (0.0, 0.0, 0.0)

(0.5, 0.5, 0.5)

antiferromagnetic (jmag=1)

operation 1 (1/2, 1/2, 1/2)

>>>>>> ab_prp.data >>>>>>>

6 その他

実行例が次のディレクトリにある。

/home/CMD/teac02/abc0/Si/

/home/CMD/teac02/abc0/Fe/

/home/CMD/teac02/abc0/Cr/

/home/CMD/teac02/abc0/LaMn03/